DOI QR코드

DOI QR Code

APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS

  • Goral, Haydar (Department of Mathematics Izmir Institute of Technology) ;
  • Sertbas, Doga Can (Department of Mathematics Faculty of Science Cukurova University)
  • Received : 2020.12.15
  • Accepted : 2021.04.06
  • Published : 2021.11.30

Abstract

Divisibility properties of harmonic numbers by a prime number p have been a recurrent topic. However, finding the exact p-adic orders of them is not easy. Using class numbers of number fields and Bernoulli numbers, we compute the exact p-adic orders of harmonic type sums. Moreover, we obtain an asymptotic formula for generalized harmonic numbers whose p-adic orders are exactly one.

Keywords

References

  1. E. Alkan, H. Goral, and D. C. Sertbas, Hyperharmonic numbers can rarely be integers, Integers 18 (2018), Paper No. A43, 15 pp.
  2. C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical J. 1 (1819), 46-49.
  3. J. Buhler, R. Crandall, R. Ernvall, and T. Metsankyla, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), no. 203, 151-153. https://doi.org/10.2307/2152942
  4. J. Buhler, R. Crandall, R. Ernvall, T. Metsankyla, and M. A. Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), no. 1-2, 89-96. https://doi.org/10.1006/jsco.1999.1011
  5. J. P. Buhler, R. E. Crandall, and R. W. Sompolski, Irregular primes to one million, Math. Comp. 59 (1992), no. 200, 717-722. https://doi.org/10.2307/2153086
  6. J. P. Buhler and D. Harvey, Irregular primes to 163 million, Math. Comp. 80 (2011), no. 276, 2435-2444. https://doi.org/10.1090/S0025-5718-2011-02461-0
  7. L. Carlitz, The class number of an imaginary quadratic field, Comment. Math. Helv. 27 (1953), 338-345 (1954). https://doi.org/10.1007/BF02564567
  8. J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York, 1996. https://doi.org/10.1007/978-1-4612-4072-3
  9. H. Davenport, Multiplicative Number Theory, third edition, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.
  10. A. Dil, I. Mezo, and M. Cenkci, Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41 (2017), no. 6, 1640-1655. https://doi.org/10.3906/mat-1603-4
  11. I. M. Gessel, Wolstenholme revisited, Amer. Math. Monthly 105 (1998), no. 7, 657-658. https://doi.org/10.2307/2589252
  12. K. Girstmair, A theorem on the numerators of the Bernoulli numbers, Amer. Math. Monthly 97 (1990), no. 2, 136-138. https://doi.org/10.2307/2323915
  13. J. W. L. Glaisher, On the residues of the sums of products of the first p - 1 numbers and their powers, to modulus p2 or p3, Q. J. Math. 31 (1900), 321-353.
  14. H. Goral and D. C. Sertbas, Almost all hyperharmonic numbers are not integers, J. Number Theory 171 (2017), 495-526. https://doi.org/10.1016/j.jnt.2016.07.023
  15. H. Goral and D. C. Sertbas, Divisibility properties of hyperharmonic numbers, Acta Math. Hungar. 154 (2018), no. 1, 147-186. https://doi.org/10.1007/s10474-017-0766-7
  16. H. Goral and D. C. Sertbas, A congruence for some generalized harmonic type sums, Int. J. Number Theory 14 (2018), no. 4, 1033-1046. https://doi.org/10.1142/S1793042118500628
  17. W. Hart, D. Harvey, and W. Ong, Irregular primes to two billion, Math. Comp. 86 (2017), no. 308, 3031-3049. https://doi.org/10.1090/mcom/3211
  18. K. Ireland and M. Rosen, A classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-2103-4
  19. W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120. https://doi.org/10.2307/2005468
  20. T. Komatsu and C. De J. Pita Ruiz V., Several explicit formulae for Bernoulli polynomials, Math. Commun. 21 (2016), no. 1, 127-140.
  21. R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), https://arxiv.org/abs/1111.3057.
  22. I. Mezo, About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 50 (2007), 13-20 (2009).
  23. SageMath, the Sage Mathematics Software System (Version 8.3), The Sage Developers, 2018. http://www.sagemath.org
  24. D. C. Sertbas, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020), no. 11-12, 1179-1185. https://doi.org/10.5802/crmath.137
  25. L. Skula, Index of irregularity of a prime, J. Reine Angew. Math. 315 (1980), 92-106. https://doi.org/10.1515/crll.1980.315.92
  26. L. Skula, The orders of solutions of the Kummer system of congruences, Trans. Amer. Math. Soc. 343 (1994), no. 2, 587-607. https://doi.org/10.2307/2154733
  27. Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000), no. 1-3, 193-223. https://doi.org/10.1016/S0166-218X(00)00184-0
  28. L. Theisinger, Bemerkung uber die harmonische Reihe, Monatsh. Math. Phys. 26 (1915), no. 1, 132-134. https://doi.org/10.1007/BF01999444
  29. S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), no. 142, 583-591. https://doi.org/10.2307/2006167
  30. J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-9.