References
- E. Alkan, H. Goral, and D. C. Sertbas, Hyperharmonic numbers can rarely be integers, Integers 18 (2018), Paper No. A43, 15 pp.
- C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical J. 1 (1819), 46-49.
- J. Buhler, R. Crandall, R. Ernvall, and T. Metsankyla, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), no. 203, 151-153. https://doi.org/10.2307/2152942
- J. Buhler, R. Crandall, R. Ernvall, T. Metsankyla, and M. A. Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), no. 1-2, 89-96. https://doi.org/10.1006/jsco.1999.1011
- J. P. Buhler, R. E. Crandall, and R. W. Sompolski, Irregular primes to one million, Math. Comp. 59 (1992), no. 200, 717-722. https://doi.org/10.2307/2153086
- J. P. Buhler and D. Harvey, Irregular primes to 163 million, Math. Comp. 80 (2011), no. 276, 2435-2444. https://doi.org/10.1090/S0025-5718-2011-02461-0
- L. Carlitz, The class number of an imaginary quadratic field, Comment. Math. Helv. 27 (1953), 338-345 (1954). https://doi.org/10.1007/BF02564567
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York, 1996. https://doi.org/10.1007/978-1-4612-4072-3
- H. Davenport, Multiplicative Number Theory, third edition, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.
- A. Dil, I. Mezo, and M. Cenkci, Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41 (2017), no. 6, 1640-1655. https://doi.org/10.3906/mat-1603-4
- I. M. Gessel, Wolstenholme revisited, Amer. Math. Monthly 105 (1998), no. 7, 657-658. https://doi.org/10.2307/2589252
- K. Girstmair, A theorem on the numerators of the Bernoulli numbers, Amer. Math. Monthly 97 (1990), no. 2, 136-138. https://doi.org/10.2307/2323915
- J. W. L. Glaisher, On the residues of the sums of products of the first p - 1 numbers and their powers, to modulus p2 or p3, Q. J. Math. 31 (1900), 321-353.
- H. Goral and D. C. Sertbas, Almost all hyperharmonic numbers are not integers, J. Number Theory 171 (2017), 495-526. https://doi.org/10.1016/j.jnt.2016.07.023
- H. Goral and D. C. Sertbas, Divisibility properties of hyperharmonic numbers, Acta Math. Hungar. 154 (2018), no. 1, 147-186. https://doi.org/10.1007/s10474-017-0766-7
- H. Goral and D. C. Sertbas, A congruence for some generalized harmonic type sums, Int. J. Number Theory 14 (2018), no. 4, 1033-1046. https://doi.org/10.1142/S1793042118500628
- W. Hart, D. Harvey, and W. Ong, Irregular primes to two billion, Math. Comp. 86 (2017), no. 308, 3031-3049. https://doi.org/10.1090/mcom/3211
- K. Ireland and M. Rosen, A classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-2103-4
- W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120. https://doi.org/10.2307/2005468
- T. Komatsu and C. De J. Pita Ruiz V., Several explicit formulae for Bernoulli polynomials, Math. Commun. 21 (2016), no. 1, 127-140.
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), https://arxiv.org/abs/1111.3057.
- I. Mezo, About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 50 (2007), 13-20 (2009).
- SageMath, the Sage Mathematics Software System (Version 8.3), The Sage Developers, 2018. http://www.sagemath.org
- D. C. Sertbas, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020), no. 11-12, 1179-1185. https://doi.org/10.5802/crmath.137
- L. Skula, Index of irregularity of a prime, J. Reine Angew. Math. 315 (1980), 92-106. https://doi.org/10.1515/crll.1980.315.92
- L. Skula, The orders of solutions of the Kummer system of congruences, Trans. Amer. Math. Soc. 343 (1994), no. 2, 587-607. https://doi.org/10.2307/2154733
- Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000), no. 1-3, 193-223. https://doi.org/10.1016/S0166-218X(00)00184-0
- L. Theisinger, Bemerkung uber die harmonische Reihe, Monatsh. Math. Phys. 26 (1915), no. 1, 132-134. https://doi.org/10.1007/BF01999444
- S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), no. 142, 583-591. https://doi.org/10.2307/2006167
- J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-9.