DOI QR코드

DOI QR Code

ON THE WEAK LIMIT THEOREMS FOR GEOMETRIC SUMMATIONS OF INDEPENDENT RANDOM VARIABLES TOGETHER WITH CONVERGENCE RATES TO ASYMMETRIC LAPLACE DISTRIBUTIONS

  • Hung, Tran Loc (Department of Mathematics and Statistics Faculty of Economics and Laws University of Finance and Marketing)
  • Received : 2020.11.22
  • Accepted : 2021.05.07
  • Published : 2021.11.30

Abstract

The asymmetric Laplace distribution arises as a limiting distribution of geometric summations of independent and identically distributed random variables with finite second moments. The main purpose of this paper is to study the weak limit theorems for geometric summations of independent (not necessarily identically distributed) random variables together with convergence rates to asymmetric Laplace distributions. Using Trotter-operator method, the orders of approximations of the distributions of geometric summations by the asymmetric Laplace distributions are established in term of the "large-𝒪" and "small-o" approximation estimates. The obtained results are extensions of some known ones.

Keywords

Acknowledgement

The author is grateful to the anonymous referees for carefully reading the manuscript and for offering comments with useful suggestions which allowed him to substantially improve the paper.

References

  1. J. Blanchet and P. Glynn, Uniform renewal theory with applications to expansions of random geometric sums, Adv. in Appl. Probab. 39 (2007), no. 4, 1070-1097. http://projecteuclid.org/euclid.aap/1198177240 https://doi.org/10.1239/aap/1198177240
  2. P. L. Butzer and L. Hahn, General theorems on rates of convergence in distribution of random variables. I. General limit theorems, J. Multivariate Anal. 8 (1978), no. 2, 181-201. https://doi.org/10.1016/0047-259X(78)90071-4
  3. P. L. Butzer and L. Hahn, General theorems on rates of convergence in distribution of random variables. II. Applications to the stable limit laws and weak law of large numbers, J. Multivariate Anal. 8 (1978), no. 2, 202-221. https://doi.org/10.1016/0047-259X(78)90072-6
  4. P. L. Butzer, L. Hahn, and U. Westphal, On the rate of approximation in the central limit theorem, J. Approximation Theory 13 (1975), 327-340. https://doi.org/10.1016/0021-9045(75)90042-8
  5. C. Dobler, New Berry-Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods, ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), no. 2, 863-902.
  6. B. V. Gnedenko and G. Fahim, On a transfer theorem, Dokl. Akad. Nauk SSSR v. 187 (1969), no. 1, 463-470.
  7. B. V. Gnedenko and V. Yu. Korolev, Random Summation, CRC Press, Boca Raton, FL, 1996.
  8. Z. Govindarajulu, On weak laws of large numbers, Proc. Indian Acad. Sci. Sect. A 71 (1970), 266-274. https://doi.org/10.1007/bf03049573
  9. A. Gut, Probability: a graduate course, Springer Texts in Statistics, Springer, New York, 2005.
  10. D. V. Hinkley and N. S. Revankar, A further analysis: "On the estimation of the Pareto law from underreported data, (J. Econometrics 2 (1974), no. 4, 327-341) by M. J. Hartley and Revankar, J. Econometrics 5 (1977), no. 1, 1-11. https://doi.org/10.1016/0304-4076(77)90031-8
  11. T. L. Hung, A study of chi-square-type distribution with geometrically distributed degrees of freedom in relation to distributions of geometric random sums, Math. Slovaca 70 (2020), no. 1, 213-232. https://doi.org/10.1515/ms-2017-0345
  12. K. Jayakumar and A. P. Kuttykrishnan, A time-series model using asymmetric Laplace distribution, Statist. Probab. Lett. 77 (2007), no. 16, 1636-1640. https://doi.org/10.1016/j.spl.2005.10.028
  13. B. Jorgensen and C. C. Kokonendji, Dispersion models for geometric sums, Braz. J. Probab. Stat. 25 (2011), no. 3, 263-293. https://doi.org/10.1214/10-BJPS136
  14. V. Kalashnikov, Geometric Sums: bounds for rare events with applications, Mathematics and its Applications, 413, Kluwer Academic Publishers Group, Dordrecht, 1997. https://doi.org/10.1007/978-94-017-1693-2
  15. L. B. Klebanov, G. M. Maniya, and I. A. Melamed, A problem of V. M. Zolotarev and analogues of infinitely divisible and stable distributions in a scheme for summation of a random number of random variables, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 757-760.
  16. S. Kotz, T. J. Kozubowski, and K. Podg'orski, The Laplace Distribution and Generalizations, Birkhauser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0173-1
  17. T. J. Kozubowski, Geometric infinite divisibility, stability, and self-similarity: an overview, in Stability in probability, 39-65, Banach Center Publ., 90, Polish Acad. Sci. Inst. Math., Warsaw, 2010. https://doi.org/10.4064/bc90-0-3
  18. T. J. Kozubowski and K. Podgorski, A multivariate and asymmetric generalization of Laplace distribution, Comput. Statist. 15 (2000), no. 4, 531-540. https://doi.org/10.1007/PL00022717
  19. T. J. Kozubowski and K. Podgorski, Asymmetric Laplace distributions, Math. Sci. 25 (2000), no. 1, 37-46.
  20. T. J. Kozubowski and K. Podgorski, Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling 34 (2001), no. 9-11, 1003-1021. https://doi.org/10.1016/S0895-7177(01)00114-5
  21. V. M. Kruglov and V. Yu. Korolev, Limit theorems for random sums (Russian), Moskov. Gos. Univ., Moscow, 1990.
  22. J. W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Z. 15 (1922), no. 1, 211-225. https://doi.org/10.1007/BF01494395
  23. J. Pike and H. Ren, Stein's method and the Laplace distribution, ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014), no. 1, 571-587. https://doi.org/10.1007/s11633-014-0767-8
  24. Z. Rychlik, A central limit theorem for sums of a random number of independent random variables, Colloq. Math. 35 (1976), no. 1, 147-158. https://doi.org/10.4064/cm-35-1-147-158
  25. V. Sakalauskas, Limit behavior of sums of a random number of independent random variables, Litovsk. Mat. Sb. 25 (1985), no. 2, 164-176.
  26. P. K. Sen and J. M. Singer, Large Sample Methods in Statistics, Chapman & Hall, New York, 1993.
  27. A. A. Toda, Weak limit of the geometric sum of independent but not identically distributed random variables, arXiv:1111.1786v2 [math.PR] 20 Jan 2012.
  28. H. F. Trotter, An elementary proof of the central limit theorem, Arch. Math. 10 (1959), 226-234. https://doi.org/10.1007/BF01240790