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ON THE WEAK LIMIT THEOREMS FOR GEOMETRIC

SUMMATIONS OF INDEPENDENT RANDOM VARIABLES

TOGETHER WITH CONVERGENCE RATES TO

ASYMMETRIC LAPLACE DISTRIBUTIONS

Tran Loc Hung

Abstract. The asymmetric Laplace distribution arises as a limiting dis-

tribution of geometric summations of independent and identically dis-

tributed random variables with finite second moments. The main pur-
pose of this paper is to study the weak limit theorems for geometric sum-

mations of independent (not necessarily identically distributed) random

variables together with convergence rates to asymmetric Laplace distribu-
tions. Using Trotter-operator method, the orders of approximations of the

distributions of geometric summations by the asymmetric Laplace distri-
butions are established in term of the “large–O” and “small–o” approx-

imation estimates. The obtained results are extensions of some known

ones.

1. Introduction

The asymmetric Laplace distribution arises as a limiting distribution of geo-
metric summations of independent and identically distributed (i.i.d.) random
variables having finite second moments. We introduce the notion of asymmet-
ric Laplace distributed random variables, following Kotz et al. [16] (Chapter 3,
Section 3.1, page 136). A random variable Lµ,σ is said to have an asymmetric
Laplace (AL) distribution, denoted by Lµ,σ ∼ AL(µ, σ), if there are param-
eters µ ∈ R (location parameter) and σ > 0 (scale parameter) such that the
characteristic function of Lµ,σ has the form

(1.1) ϕ(t) =

(
1− iµt+

1

2
σ2t2

)−1
.

It is to be noticed that the asymmetric Laplace distributed random variable
Lµ,σ with characteristic function in form (1.1) is a geometric infinitely divisible
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(G.I.D) random variable (see for instance [16], Proposition 3.4.3, page 151). For
a deeper discussion of G.I.D. random variables we refer the reader to [1], [7],

[13], [15,16,21] and [20]. With the notation κ =
√

2σ(µ+
√
µ2 + 2σ2)−1, we can

express the probability density function pµ,σ(x) and probability distribution
functions Fµ,σ(x) of an asymmetric Laplace distributed random variable Lµ,σ,
as follows

(1.2) pµ,σ(x) =


√
2
σ

κ
1+κ2 exp

(
−
√
2κ
σ x

)
, if x ≥ 0,

√
2
σ

κ
1+κ2 exp

(√
2

σκx
)
, if x < 0,

and

(1.3) Fµ,σ(x) =

1− 1
1+κ2 exp

(
−
√
2κ
σ x

)
, if x ≥ 0,

κ2

1+κ2 exp
(√

2
σκx

)
, if x < 0.

Direct computation shows that, for r ∈ N,
E(Lµ,σ) = µ,E(L2

µ,σ) = 2µ2 + σ2, V ar(Lµ,σ) = µ2 + σ2,

E|Lµ,σ|r =

(
σ√
2κ

Γ(r + 1)
1 + κ2(r+1)

1 + κ2

)r
.

(1.4)

The asymmetric Laplace distribution which was introduced by Hinkley and
Revankar [10] and has been studied more recently by many authors. Although
not wide known, the asymmetric Laplace distribution plays an important role
in probability theory and it appears in a number of applications in sciences,
in business, and in branches of engineering. In view of (1.2)–(1.4), the asym-
metric Laplace distribution has finite moments of all orders, explicit formulas
for density and distribution functions, the asymmetric Laplace distribution is
much easier to work with in practice than several geometric stable laws (see
[20] and the references given there). Especially, the asymmetric Laplace dis-
tribution has been used for modeling data exhibiting asymmetry and heavy
tails. Furthermore, if the variable of interest can be viewed as a geometric
summations of increment with finite second moment, then its distribution can
be approximated by an asymmetric Laplace distribution. A comprehensive re-
view of the asymmetric Laplace distribution can be found in [12], [16–20] and
the references given there.

Let (Ω,B,P) be a probability space and suppose that all random variables
under consideration are defined on this probability space. Let X,X1, X2, . . . be
a sequence of i.i.d. random variables with common mean E(X) = µ and finite
variance 0 < σ2 = V ar(X) < +∞. Further, let νp be a geometric random
variable, denoted by νp ∼ Geo(p), having mean p−1, p ∈ (0, 1) and probability
mass function

P (νp = k) = p(1− p)k−1, k ≥ 1.

From now on we suppose that for each p ∈ (0, 1) the geometric random variable

νp is independent of all Xj , j ≥ 1. It is worth noticing that νp
P−→ +∞ when
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p→ 0 (see Appendix, Proposition A1), here and from now on the symbol
P−→

denotes convergence in probability. As discussed in Kalashnikov [14], the geo-
metric summations arise naturally in diverse fields of applications such as risk
theory, modeling financial asset returns, insurance mathematics and others.
Consequently the Laplace distribution is applicable for stochastic modeling,
stochastic analysis, etc. (see e.g., [17–20]). According to Gnedenko’s trans-
fer theorem [6], Sakalauskas has established the order of approximations for
distribution of geometric summation by a stable distribution with exponent
α ∈ (0, 2] (see [25], Theorems 2, 3 and 5 with Corollaries). Further, using
Stein’s method, some results related to Berry–Esseen type theorems for con-
vergence of the distributions of geometric summations to symmetric Laplace
distribution have been obtained by Pike and Ren [23], and by Dobler [5]. How-
ever, these results have been received only for symmetric Laplace distributions
(see [5] and [23] for more details).

It is well known that under desired conditions, the asymmetric Laplace dis-
tribution with characteristic function in (1.1) arises as a limiting distribution
of (appropriately normalized) geometric summation of i.i.d. random variables
with finite second moments

(1.5) p1/2
νp∑
j=1

(
Xj − µ+ p1/2µ

)
d−→ Lµ,σ as p→ 0,

where Lµ,σ ∼ AL(µ, σ), µ ∈ R, σ > 0, the symbol
d−→ stands for convergence

in distribution. The detailed proof of limiting assertion (1.5) was presented
in Kotz et al. [16] by method of characteristic functions (see [16], Proposition
3.4.4, page 152). It seems that the way of using the characteristic functions is
complicated for the case of independent and non-identically distributed random
variables. This problem was discussed by Toda [27], using the idea of Lindeberg
[22], with a so–called Lindeberg–type condition (see [27], condition (2.1), page
3) and notion of uniformly integrability for a sequence of independent non-
identically distributed random variables X2

j for j ≥ 1 (see [27], Theorem 2.1,
Corollaries 2.2 and 2.3, page 3). However, in [27], the rates of convergence in
(1.5) were omitted. When studying limit theorems in probability theory it is
important to try to assess the rates at which these converge. Therefore, the
estimates of convergence rate in weak limit theorems for geometric summation
in the type of (1.5) are main results of this paper.

In the paper, with an extension of classical Lindeberg condition (see [26],
page 112), a weak limit theorem for geometric summation of independent non–
identically distributed random variables, will be proved by method of Trotter
operator [28]. It is worth noted that the limiting result in (1.5) may be followed
directly from Theorem 3.2. We also investigate the convergence in distribution
of normalized geometric summations of a sequence of independent (not nec-
essarily identically distributed) random variables to the asymmetric Laplace
distributed random variables when parameter p tends to zero. The obtained



1422 T. L. HUNG

results related to sequences of independent but non-identically distributed ran-
dom variables satisfied the so–called geometric Lindeberg condition. Some rates
of convergence in type of the “large–O” and “small–o” approximation estimates
for limiting assertion (1.5) are established, in term of Trotter’s operator.

In the paper, we follow the notations used in [16] (see Abbreviation and
Notation, page 16), where an = O(bn) means

∣∣an/bn∣∣ is bounded for n →
∞, an = o(bn) expresses that lim

n→∞
an/bn = 0 and an = o(1) if lim

n→∞
an = 0.

The techniques used in this paper for estimating the rates of convergence may
be found in [2–4], [8], [24] and [28].

This paper is organized as follows. Section 2 is a brief introduction to Trot-
ter’s operator with main properties. The class of the modulus of continuity and
Lipschitz functions is recalled. The Lindeberg type and Liapunov type condi-
tions of order r for sequences of independent random variables are defined in
this section, too. Section 3 is devoted to the discussion of the weak limit the-
orems for normalized geometric summations of independent random variables
with convergence rates to the asymmetric Laplace distributed random variables
in term of large–O and small–o approximation estimates. The obtained results
are extensions of some known ones.

2. Some notations, definitions and auxiliary results

Before proceeding to the main results we introduce some notations and pre-
liminaries concerning Trotter’s operator [28] and related results.

2.1. Trotter’s operator

Throughout this paper, the symbol CB(R) will denote the set of all bounded
uniformly continuous functions on R and CrB(R) := {f ∈ CB(R) : f (j) ∈
CB(R), 1 ≤ j ≤ r; r ∈ N}. The norm of function f ∈ CB(R) is defined by
||f || = sup

x∈R
|f(x)|. We introduce the notion of Trotter’s operator, following [28].

Definition ([28]). Let X be a random variable. For each f ∈ CB(R), Trotter’s
operator AX associated with the random variable X is defined by

(2.1) AXf(t) := E
[
f(X + t)

]
=

∫
R
f(x+ t)dFX(x), t ∈ R,

where FX is the distribution function of X.

In the sequel, we shall use the following properties of Trotter’s operator AX
defined in (2.1). The proofs may be found in [4], [8], [24] and [28].

(1) The operator AX is a linear positive “contraction” operator, that is

‖ AXf ‖≤‖ f ‖

for each f ∈ CB(R).
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(2) The equation AXf(t) = AY f(t) for each f ∈ CB(R), t ∈ R, provided
that X and Y are identically distributed random variables, in short

X
d
= Y.

(3) If X1, X2, . . . , Xn are independent random variables, then for f ∈
CB(R)

A n∑
j=1

Xj
(f) = AX1

◦ · · · ◦AXn(f).

(4) If X,X1, X2, . . . , Xn are i.i.d. random variables, then for f ∈ CB(R)

A n∑
j=1

Xj
(f) = AnX(f).

(5) Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, are independent ran-
dom variables (in each group) and they are independent. Then, for
each f ∈ CB(R)∣∣∣∣∣∣∣∣A n∑

j=1
Xj

(f)−A n∑
j=1

Yj
(f)

∣∣∣∣∣∣∣∣ ≤ n∑
j=1

∣∣∣∣∣∣∣∣AXj (f)−AYj (f)

∣∣∣∣∣∣∣∣.
Furthermore, for two independent random variables X and Y, for each
f ∈ CB(R) and for n ≥ 1,∣∣∣∣∣∣∣∣AnX(f)−AnY (f)

∣∣∣∣∣∣∣∣ ≤ n∣∣∣∣∣∣∣∣AX(f)−AY (t)

∣∣∣∣∣∣∣∣.
The following lemma is playing a key role in weak limit theorems (see [2], [4],
[8] and [28] for more details). The proof of the lemma may be found in [8] and
[28].

Lemma 2.1 ([28]). A sufficient condition for a sequence of random variables

X1, X2, . . . to converge in distribution to a random variable X, in short Xn
d−→

X, is that ∣∣∣∣∣∣∣∣AXnf −AXf ∣∣∣∣∣∣∣∣ = o(1) as n→ 0.

Next lemmas will be needed in proofs in the sequel. The proofs are based on
Trotter–operator’s properties [28] and random summations in [9] (see Chapter
2, Section 15, pages 85–86).

Lemma 2.2. Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, are independent
random variables (in each group) and they are independent. Let νp be a geo-
metric random variable with mean p−1, p ∈ (0, 1), independent of all Xj and
Yj, 1 ≤ j ≤ n. Then, for each f ∈ CB(R)∣∣∣∣∣∣∣∣A νp∑

j=1
Xj

(f)−A νp∑
j=1

Yj
(f)

∣∣∣∣∣∣∣∣ ≤ E( νp∑
j=1

∣∣∣∣∣∣∣∣AXj (f)−AYj (f)

∣∣∣∣∣∣∣∣).
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Lemma 2.3. Suppose that X,X1, X2, . . . , Xn and Y, Y1, Y2, . . . , Yn, are i.i.d.
random variables (in each group) and they are independent. Let νp be a geo-
metric random variable with mean p−1, p ∈ (0, 1), independent of all Xj and
Yj, 1 ≤ j ≤ n. Then, for each f ∈ CB(R)∣∣∣∣∣∣∣∣A νp∑

j=1
Xj

(f)−A νp∑
j=1

Yj
(f)

∣∣∣∣∣∣∣∣ ≤ E(νp)

∣∣∣∣∣∣∣∣AX(f)−AY (f)

∣∣∣∣∣∣∣∣.
2.2. The modulus of continuity and Lipschitz condition

We follow the definitions and notations in [4].

Definition ([4]). For any f ∈ CB(R), the modulus of continuity with δ > 0 is
defined by

(2.2) ω(f, δ) = sup
|h|≤δ

{
|f(t+ h)− f(t)|

}
, t ∈ R.

We shall need in the sequel following properties of the modulus of continuity
ω(f, δ) as follows.

(1) The modulus of continuity ω(f, δ) is a monotone decreasing function
of δ with ω(f, δ)→ 0 for δ → 0+.

(2) For each λ > 0, we have ω(f, λδ) ≤ (1 + λ)ω(f, δ).

Definition ([4]). A function f ∈ CB(R) is said to satisfy a Lipschitz condition
of order α, (0 < α ≤ 1), in symbols f ∈ Lip(α), if

(2.3) ω(f ; δ) = O(δα).

It is obvious that f ′ ∈ CB(R) implies f ∈ Lip(1).

2.3. Moment inequality

Next proposition will be needed in proofs of Theorems 3.6 and 3.7.

Proposition 2.4 ([4]). Let X be a random variable with E(|X|r) < +∞,
r ∈ N. Then E(|X|j) < +∞, for any 1 ≤ j ≤ r, and

(2.4) E
(
|X|j

)
≤ 1 + E (|X|r) .

Proof. The proof may be found in [11] (Appendix, page 230). �

2.4. Asymmetric Laplace distributed random variable

Lemma 2.5. Let Lµ,σ be an asymmetric Laplace distributed random vari-
able with location parameter µ ∈ R and scale parameter σ > 0, (in short,
Lµ,σ ∼ AL(µ, σ)). Then, for each p ∈ (0, 1), there exist independent, identically

asymmetric Laplace distributed random variables L
(1)
p , L

(2)
p , . . . , L

(νp)
p , such that

(2.5) Lµ,σ
d
= p1/2

νp∑
j=1

L(j)
p ,
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where νp is a geometric random variable having mean p−1, independent of all

L
(j)
p , j ≥ 1. The random variables L

(j)
p are independent, asymmetric Laplace

distributed with location parameter p1/2µ ∈ R, and scale parameter σ > 0, i.e.,

L
(j)
p ∼ AL(p1/2µ, σ), 1 ≤ j ≤ νp. From now on, the notation

d
= expresses the

equality in the sense of distributions.

Proof. Since L
(j)
p ∼ AL(p

1
2µ, σ), it follows that the characteristic function of

an asymmetric Laplace distributed random variable L
(j)
p at point p1/2t is given

by

ϕ
L

(j)
p

(p1/2t) =
1

1− iptµ+ 1
2pσ

2t2
.

Using the formula of the characteristic function of a random sum ([9], Theorem
9.1, page 193) and Equation (1.1), for t ∈ (−∞,+∞), we have

ϕ
p1/2

νp∑
j=1

L
(j)
p

(t) = ψνp
(
ϕ
L

(j)
p

(p1/2t)
)

=
pϕ

L
(j)
p

(p1/2t)

1− (1− p)ϕ
L

(j)
p

(p1/2t)

=
1

1− itµ+ 1
2 t

2σ2
= ϕLµ,σ (t),

where ψνp(t) is moment generating function of νp. According to the Continuity
Theorem for characteristic function ([9], Theorem 9.1, page 238), it finishes the
proof. �

2.5. Geometric Lindeberg condition

Definition (Geometric Lindeberg condition). Let X1, X2, . . . be a sequence of
independent random variables with means E(Xj) = µj and E(|Xj − µj |r) <
+∞, r ≥ 2, j = 1, 2, . . . . Let νp be a geometric variable having mean p−1,
p ∈ (0, 1), independent of all Xj , j ≥ 1. The sequence X1, X2, . . . is said to
satisfy geometric Lindeberg condition of order r, if for every τ > 0,

Lrνp(τ) := E

 νp∑
j=1

E
[
|Xj − µj |r1{|Xj−µj |≥τp−1/2}

]/ νp∑
j=1

E|Xj − µj |r
(2.6)

= o(1)

as p→ 0, where 1{A} stands for indicator function of a set A.

Lemma 2.6. Let X,X1, X2, . . . be a sequence of i.i.d. random variables with
common mean E(X) = µ and E|X − µ|r < +∞, r ≥ 2. Let νp be a geometric
variable having mean p−1, p ∈ (0, 1), independent of all Xj, j ≥ 1. Then, the
geometric Lindeberg condition (2.6) holds for the sequence X,X1, X2, . . . .
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Proof. According to [9] (formula (15.4), page 84), an trivial verification shows
that, for the i.i.d. random variables X,X1, X2, . . .

Lrνp(τ) := E

 νp∑
j=1

E
[
|X − µ|r1{|X−µ|≥τp−1/2}

]/ νp∑
j=1

E|X − µ|r


=

∞∑
n=1

P (νp=n)E

 n∑
j=1

E
[
|X − µ|r1{|X−µ|≥τp−1/2}

]/ n∑
j=1

E|X − µ|r


= E
[
|X − µ|r1{|X−µ|≥τp−1/2}

]/
E|X − µ|r

= o(1) as p→ 0,

since E|X − µ|r < +∞, r ≥ 2, and therefore

E
[
|X − µ|r1{|X−µ|≥τp−1/2}

]
= o(1) as p→ 0.

�

Remark 2.7. (1) For the case P (νp = n) = 1, p = n−1, r = 2, the geomet-
ric Lindeberg condition (2.6) reduces to classical Lindeberg condition
(see, e.g. [4], condition (1.16), page 330 or [9], condition (2.2), p. 330).

(2) Results related to random version of Lindeberg’s condition may be
found in [24] (condition (5), page 148).

(3) The condition (2.1) in [27] is followed from geometric Lindeberg condi-
tion (2.6) of order 2 (see Appendix, Proposition A2 for more details).

A slightly stronger condition is the following geometric Lyapunov condition.

Definition. (Geometric Lyapunov condition) Let X1, X2, . . . be a sequence
of random variables with E(Xj) = µj and E(|Xj − µj |r) < +∞, r ≥ 2,
j = 1, 2, . . . . Let νp be a geometric variable having mean p−1, p ∈ (0, 1), inde-
pendent of all Xj , j ≥ 1. The sequence X1, X2, . . . is said to satisfy geometric
Lyapunov condition of order r, if for every ε > 0,

(2.7) E

 νp∑
j=1

E
(
|Xj − µj |r+ε

)/
pε/2

νp∑
j=1

E|Xj − µj |r
 = o(1) as p→ 0.

Remark 2.8. For the case P (νp = n) = 1, p = n−1, r = 2, the geometric
Lyapunov condition (2.7) reduces to classical Lyapunov condition (see, e.g. [9],
condition (2.20), p. 339).

Proposition 2.9. If a sequence X1, X2, . . . satisfies the geometric Lyapunov
condition of order r in (2.7), then it also satisfies the geometric Lindeberg
condition of order r in (2.6).
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Proof. It is clear that from |Xj −µj | ≥ τp−1/2 implies |Xj −µj |ε ≥ τ εp−ε/2 for
arbitrary ε > 0. Then

0 ≤ Lrνp(τ) = E

 νp∑
j=1

E
[
|Xj − µj |r1{|Xj−µj |≥τp−1/2}

]/ νp∑
j=1

E|Xj − µj |r


≤ τ−εE

 νp∑
j=1

E
(
|Xj − µj |r+ε

)/
pε/2

νp∑
j=1

E|Xj − µj |r
 .

Since τ is arbitrary, the assertion is followed. �

3. Main results

3.1. Weak limit theorems for geometric summations

Throughout the forthcoming, unless otherwise specified, we shall denote that
for n ≥ 1, the Xn,1, Xn,2, . . . be a sequence of independent (not necessarily
identically distributed) random variables with mean E(Xn,j) = µj and finite
variance 0 < V ar(Xn,j) = σ2

j < +∞ for j = 1, 2, . . . , n. Write µ = n−1
∑n
j=1 µj

and σ2 = n−1
∑n
j=1 σ

2
j . Let νp ∼ Geo(p) be a geometric distributed random

variable with mean p−1, p ∈ (0, 1), independent of Xn,j for j = 1, 2, . . . , n;n ≥
1. Let Lµ,σ ∼ AL(µ, σ) be an asymmetric Laplace distributed random variable
with location parameter µ, scale parameter σ > 0 and its characteristic function
is given in (1.1).

The following weak limit theorem for geometric summation of Xn,1, Xn,2, . . .
states as follows.

Theorem 3.1 (Weak limit theorem for geometric summations of independent
non–identically distributed random variables). Suppose that for the sequence
Xn,1, Xn,2, . . . the geometric Lindeberg condition of order 2

E


νp∑
j=1

E
[∣∣Xn,j − µ+ p1/2µ

∣∣2 1{|Xn,j−µ+p1/2µ|≥τp−1/2}

]
νp∑
j=1

E
∣∣Xn,j − µ+ p1/2µ

∣∣2
 = o(1)

holds when p→ 0 for τ > 0. Then, the weak limit theorem states that

(3.1) p1/2
νp∑
j=1

(Xn,j − µ+ p1/2µ)
d−→ Lµ,σ as p→ 0.

Proof. From now on, let us writeWn,j = Xn,j−µ+p1/2µ = Xn,j+µ(p1/2−1) for
j = 1, 2, . . . , n;n ≥ 1. It is clear that the random variablesWn,j are independent
for n ≥ 1 and for all j = 1, 2, . . . , n. A direct computation shows that

E(Wn,j) = p
1
2µ and E(W 2

n,j) = σ2 + pµ2.
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According to properties of Trotter’s operator in (2.1) and Lemma 2.2, for each
f ∈ C2

B(R), we have∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −A
p1/2

νp∑
j=1

Lp(j)
f

∣∣∣∣∣∣∣∣.
Therefore, a sufficient condition for the validity of limiting assertion (3.1) is

(3.2)

∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −A
p1/2

νp∑
j=1

Lp(j)
f

∣∣∣∣∣∣∣∣ = o(1) as p→ 0

for each f ∈ C2
B(R).

Applying Trotter’s operator [28] to a function f ∈ C2
B(R), with Taylor series

expansion (see [26], formula (1.4.6), page 17) for r = 2, this yields

E
[
f(p1/2Wn,j + y)

]
(3.3)

= E

[
f(y) + f ′(y)p1/2Wn,j + f ′′(y)

pW 2
n,j

2
+ (f ′′(η)− f ′′(y))

pW 2
n,j

2

]

= f(y) + p1/2f ′(y)E(Wn,j) +
pf ′′(y)

2
E(W 2

n,j)

+ E

[
(f ′′(η)− f ′′(y))

pW 2
n,j

2

]

= f(y) + f ′(y)pµ+
f ′′(y)

2
p(σ2 + pµ2) +

p

2
E
[
(f ′′(η)− f ′′(y))W 2

n,j

]
,

where |η − y| < p1/2|x|, y ∈ R. By an argument analogous, for f ∈ C2
B(R),

y ∈ R,

E
[
f(p1/2Lp(j) + y)

]
(3.4)

= E

[
f(y) + f ′(y)p1/2Lp(j) + f ′′(y)

pL2
p(j)

2
+ (f ′′(η)− f ′′(y))

pL2
p(j)

2

]

= f(y) + p1/2f ′(y)E(Lp(1)) +
pf ′′(y)

2
E
(
L2
p(j)

)
+ E

[
(f ′′(η)− f ′′(y))

pL2
p(j)

2

]

= f(y) + f ′(y)pµ+
f ′′(y)

2
p(σ2 + pµ2) +

p

2
E
[
(f ′′(η)− f ′′(y))L2

p(j)
]
,

where |η − y| < p1/2|x|. Combining (3.3) and (3.4), for δ > 0, it follows that∣∣∣E [f(p1/2Wn,j + y)
]
− E

[
f(p1/2Lp(j) + y)

]∣∣∣(3.5)

≤ p

2
E
[
|f ′′(η)− f ′′(y)|W 2

n,j

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|L2

p(j)
]
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≤ p

2
E
[
|f ′′(η)− f ′′(y)|W 2

n,j1{|Wn,j |<p−1/2δ}

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|W 2

n,j1{|Wn,j |≥p−1/2δ}

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|L2

p(j)1{|L2
p(j)|<p−1/2δ}

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|L2

p(j)1{|Lp(j)|≥p−1/2δ}

]
.

Since f ∈ C2
B(R), for every ε > 0, there exists δ > 0, such that for |η−y| < δ, we

have |f ′′(η)−f ′′(y)| < ε. Therefore, for |x| < p−1/2δ we have |f ′′(η)−f ′′(y)| < ε
and |f ′′(η)− f ′′(y)| ≤ 2||f ′′|| for |x| ≥ p−1/2δ. Then, from (3.5) it follows that

sup
y∈R

∣∣∣E [f(p1/2Wn,j + y)
]
− E

[
f(p1/2Lp(j) + y)

]∣∣∣(3.6)

=

∣∣∣∣∣∣∣∣Ap−1/2Wn,j
f −Ap−1/2Lp(j)f

∣∣∣∣∣∣∣∣
≤ p

2
εE(W 2

n,j) + p||f ′′||
[
EW 2

n,j1{|Wn,j |≥p−1/2δ}

]
+
p

2
εEL2

p(j) + p||f ′′||
[
EL2

p(j)1{|Lp(j)|≥p−1/2δ}

]
.

Multiplying by (2p−1), summing over the j’s and dividing by
n∑
j=1

(
EW 2

n,j + EL2
p(j)

)
,

from (3.6) one has
n∑
j=1

∣∣∣∣∣∣∣∣Ap−1/2Wn,j
f −Ap−1/2Lp(j)f

∣∣∣∣∣∣∣∣(p2
[ n∑
j=1

EW 2
n,j +

n∑
j=1

EL2
p(j)

])−1
(3.7)

≤ ε+ 2||f ′′||
( n∑
j=1

EW 2
n,j1{|Wn,j |≥p−1/2δ}

/ n∑
j=1

EW 2
n,j

)

+ 2||f ′′||
( n∑
j=1

EL2
p(j)1{|Lp(j)|≥p−1/2δ}

/ n∑
j=1

EL2
p(j)

)
.

According to [9] (see formula (15.4), page 84), from (3.7), it may be concluded
that

∞∑
n=1

P (νp = n)E

{ n∑
j=1

∣∣∣∣∣∣∣∣Ap−1/2Wn,j
f−A

p−1/2Lp(j)
f

∣∣∣∣∣∣∣∣
p
2

[
n∑
j=1

EW 2
n,j+

n∑
j=1

EL2
p(j)

] }(3.8)

= E

{ νp∑
j=1

∣∣∣∣∣∣∣∣Ap−1/2Wn,j
f −Ap−1/2Lp(j)f

∣∣∣∣∣∣∣∣}E(p2
[ νp∑
j=1

EW 2
n,j +

νp∑
j=1

EL2
p(j)

])−1
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≤ ε+ 2||f ′′||E
( νp∑
j=1

EW 2
n,j1{|Wn,j |≥p−1/2δ}

/ νp∑
j=1

EW 2
n,j

)

+ 2||f ′′||E
( νp∑
j=1

EL2
p(j)1{|Lp(j)|≥p−1/2δ}

/ νp∑
j=1

EL2
p(j)

)
.

Thus, in view of Lemma 2.2, from (3.8) it may be concluded that

∣∣∣∣∣∣∣∣A
p−1/2

νp∑
j=1

Wn,j

f −A
p−1/2

νp∑
j=1

Lp
f

∣∣∣∣∣∣∣∣E(p2
[ νp∑
j=1

EW 2
n,j +

νp∑
j=1

EL2
p(j)

])−1(3.9)

≤ E

{ νp∑
j=1

∣∣∣∣∣∣∣∣Tp−1/2Wn,j
f − Tp−1/2Lp(j)f

∣∣∣∣∣∣∣∣}E(p2
[ νp∑
j=1

EW 2
n,j +

νp∑
j=1

EL2
p(j)

])−1

≤ ε+ 2||f ′′||E
( νp∑
j=1

EW 2
n,j1{|Wn,j |≥p−1/2δ}

/ νp∑
j=1

EW 2
n,j

)

+ 2||f ′′||E
( νp∑
j=1

EL2
p(j)1{|Lp(j)|≥p−1/2δ}

/ νp∑
j=1

EL2
p(j)

)
for f ∈ C2

B(R).

On the left-hand side of (3.9) the term E

(
p
2

[
νp∑
j=1

EW 2
n,j+

νp∑
j=1

EL2
p(j)

])−1
→

σ−2 < +∞ as p→ 0. Since ε(> 0) on the right-hand side of (3.9) is arbitrary,
in view of geometric Lindeberg condition for sequence of independent random
variables {Wn,j , j ≥ 1} and sequence of i.i.d. random variables {Lp(j), j ≥ 1},
it follows that ∣∣∣∣∣∣∣∣A

p−1/2
νp∑
j=1

Wn,j

f −A
p−1/2

νp∑
j=1

Lp
f

∣∣∣∣∣∣∣∣ = o
(
1
)

as p→ 0. The proof is complete. �

The following theorem is a weak limit theorem for geometric summation of
i.i.d. random variables. The proof will be given by the same way as Theorem
3.1.

Theorem 3.2 (Weak limit theorem for geometric summation of i.i.d. random
variables). For n ≥ 1, let Xn,1, Xn,2, . . . be a sequence of i.i.d. random variable
with common mean µ and variance 0 < σ2 < +∞ for j ≥ 1. Let νp ∼ Geo(p) be
a geometric distributed random variable with mean p−1, p ∈ (0, 1), independent
of all Xn,j for j ≥ 1 and n ≥ 1. Then (1.5) holds.

Proof. A sufficient condition for the validity of limiting assertion (1.5) is

(3.10) E(νp) ‖ Ap−1/2Wn,1
f −Ap−1/2Lp(1)f ‖= o(1) as p→ 0
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for each f ∈ C2
B(R). Using Taylor series expansion (see [26], formula (1.4.6),

page 17) for f ∈ C2
B(R) and y ∈ R, we have

E
[
f(p1/2Wn,1 + y)

]
(3.11)

= E

[
f(y) + f ′(y)p1/2Wn,1 + f ′′(y)

pW 2
n,1

2
+

(
f ′′(η)− f ′′(y)

)
pW 2

n,1

2

]

= f(y) + p1/2f ′E(Wn,1) +
pf ′′(y)

2
E(W 2

n,1)

+ E

[(
f ′′(η)− f ′′(y)

)
pW 2

n,1

2

]

= f(y) + f ′(y)pµ+
f ′′(y)

2
p(σ2 + pµ2) +

p

2
E

[(
f ′′(η)− f ′′(y)

)
W 2
n,1

]
,

where | η − y |< p1/2 | x | .
By an argument analogous, for f ∈ C2

B(R), y ∈ R, it follows that

E
[
f(p1/2Lp(1) + y)

]
(3.12)

= E

[
f(y)+f ′(y)p1/2Lp(1)+f ′′(y)

pL2
p(1)

2
+

(
f ′′(η)−f ′′(y)

)
pL2

p(1)

2

]

= f(y) + p1/2f ′E(Lp(1)) +
pf ′′(y)

2
E(L2

p(1))

+ E

[(
f ′′(η)− f ′′(y)

)
pL2

p(1)

2

]

= f(y) + f ′(y)pµ+
f ′′(y)

2
p(σ2 + pµ2) +

p

2
E

[(
f ′′(η)− f ′′(y)

)
L2
p(1)

]
,

where | η − y |< p1/2|x|.
Combining the (3.11) and (3.12), for δ > 0, it follows that∣∣∣E [f(p1/2Wn,1 + y)

]
− E

[
f(p1/2Lp(1) + y)

]∣∣∣(3.13)

≤ p

2
E
[
|f ′′(η)− f ′′(y)|W 2

n,1

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|L2

p(1)
]

≤ p

2
E
[
|f ′′(η)− f ′′(y)|W 2

n,11{|Wn,1|<p−1/2δ}

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|W 2

n,11{|Wn,1|≥p−1/2δ}

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|L2

p(1)1{|Lp(1)|<p−1/2δ}

]
+
p

2
E
[
|f ′′(η)− f ′′(y)|L2

p(1)1{|Lp(1)|≥p−1/2δ}

]
.
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Since f ∈ C2
B(R), for every ε > 0, there exists δ > 0, such that for |η−y| < δ, we

have |f ′′(η)−f ′′(y)| < ε. Therefore, we have |f ′′(η)−f ′′(y)| < ε for |x| < p−1/2δ
and |f ′′(η)− f ′′(y)| ≤ 2||f ′′|| for |x| ≥ p−1/2δ. Then, from (3.13) it follows that

sup
y∈R

∣∣∣E [f(p1/2Wn,1 + y)
]
− E

[
f(p1/2Lp(1) + y)

]∣∣∣(3.14)

=

∣∣∣∣∣∣∣∣Ap−1/2Wn,1
f −Ap−1/2Lp(1)f

∣∣∣∣∣∣∣∣
≤ p

2
εE(W 2

n,1) + p||f ′′||
[
EW 2

n,j1{|Wn,1|≥p−1/2δ}

]
+
p

2
εE(L2

p(1)) + p||f ′′||
[
EL2

p(1)1{|Lp(1)|≥p−1/2δ}

]
.

Multiplying by 2p−1, and dividing by

[
EW 2

n,1 + EL2
p(1)

]
, one has

n

∣∣∣∣∣∣∣∣Ap−1/2Wn,1
f −Ap−1/2Lp(1)f

∣∣∣∣∣∣∣∣× (np2
[
EW 2

n,1 + EL2
p(1)

])−1
(3.15)

≤ ε+ 2||f ′′||
(
EW 2

n,11{|Wn,1|≥p−1/2δ}

/
EW 2

n,1

)
+ ε+ 2|f ′′||

(
EL2

p(1)1{|Lp(1)|≥p−1/2δ}

/
EL2

p(1)

)
.

According to Lemma 2.3, from (3.15), it may be concluded that

E(νp)

∣∣∣∣∣∣∣∣Ap−1/2Wn,1
f −Ap−1/2Lp(1)f

∣∣∣∣∣∣∣∣× (p2E(νp)
[
EW 2

n,1 + EL2
p(1)

])−1
(3.16)

≤ ε+ 2||f ′′||
(
EW 2

n,11{|Wn,1|≥p−1/2δ}

/
EW 2

n,1

)
+ ε+ 2||f ′′||

(
EL2

p(1)1{|Lp(1)|≥p−1/2δ}

/
EL2

p(1)

)
.

Since EW 2
n,1 and EL2

p are finite, both terms EW 2
n,11{|Wn,1|≥p−1/2δ} → 0 and

EL2
p1{|Wp|≥p−1/2δ} → 0 for p→ 0. On the other hand, the term(

p

2
E(νp)

[
EW 2

n,1 + EL2
p(1)

])−1
= σ−2

is finite. Therefore, as p→ 0, we obtain

E(νp)

∣∣∣∣∣∣∣∣Ap−1/2Wn,j
f −Ap−1/2Lp(j)f

∣∣∣∣∣∣∣∣ = o
(
1
)
.

The proof is complete. �
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3.2. Small–o approximation estimates

The order of approximations of the distribution of geometric summation will
be established by the following theorems.

Theorem 3.3 (“Small–o” approximation estimate for geometric summation of
independent (not necessarily identically distributed) random variables). Un-
der the hypotheses of Theorem 3.1 with assumptions E(|Xn,j |r) < +∞ and
E|Lp(j)|r < +∞ for r ≥ 2, j ≥ 1, n ≥ 1, suppose that the following condition

(3.17) E

(
W k
n,j

)
= E

(
Lkp(j)

)
holds, for k ≥ 2, j ≥ 1, n ≥ 1. Furthermore, suppose that for r ≥ 2, j ≥ 1,
n ≥ 1, the sequence Xn,1, Xn,1, . . . satisfies geometric Lindeberg condition (2.7).
Then, for any function f ∈ CrB(R), as p→ 0,
(3.18)∣∣∣∣∣∣∣∣A

p1/2
νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ = o

pr/2
r!

E

 νp∑
j=1

(
E|Wn,j |r + E|Lp(j)|r

) ,

if E

(
νp∑
j=1

E|Wn,j |r
)
< +∞ and E

(
νp∑
j=1

E|L(j)
p |r

)
< +∞ for r ≥ 2.

Proof. Using Taylor series expansion (see [26], formula (1.4.6), page 17), for
f ∈ CrB(R), we have∣∣∣∣E(f(p1/2Wn,j + y

))
− f(y)−

r∑
k=1

f (k)(y)

k!
pk/2E(W k

n,j)

∣∣∣∣(3.19)

≤ pr/2

r!
E

∣∣∣∣f (r)(η)− fr(y)

∣∣∣∣∣∣∣∣W r
n,j

∣∣∣∣
≤ pr/2

r!
εE|W r

n,j |+
pr/2

r!
2||f (r)||E|W r

n,j |1{|Wn,j |≥p−1/2δ},

where η is some number between y and y + p1/2x, and δ > 0 is chosen as in
the proof of Theorem 3.1. By an argument analogous, for f ∈ CrB(R), y ∈ R,
we have ∣∣∣∣E(f(p1/2Lp(j) + y

))
− f(y)−

r∑
k=1

f (k)(y)

k!
pk/2E(Lkp(j))

∣∣∣∣(3.20)

≤ pr/2

r!
E

∣∣∣∣f (r)(η)− fr(y)

∣∣∣∣∣∣∣∣Lrp(j)∣∣∣∣
≤ pr/2

r!
εE|Lrp(j)|+

pr/2

r!
2||f (r)||E|Lrp(j)|1{|Lp(j)|≥p−1/2δ},

where η is some number between y and y + p1/2x, and δ > 0.
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On account of condition (3.17), for every ε > 0, δ > 0, y ∈ R we obtain

sup
y∈R

∣∣∣Ef(p1/2Wn,j + y)− Ef(p1/2Lp(j) + y)
∣∣∣

(3.21)

=

∣∣∣∣∣∣∣∣Ap1/2Wn,j
f −Ap1/2Lp(j)f

∣∣∣∣∣∣∣∣
≤ ε

pr/2

r!

(
E|W r

n,j |+ E|Lrp(j)|
)

+ 2||f (r)||p
r/2

r!

[
E
(
|W r

n,j |1{|Wn,j |≥δp−1/2}

)
+ E

(
|Lrp(j)|1{|Lp(j)|≥δp−1/2}

)]
.

Multiplying by r!p−r/2, summing over the j’s and dividing by

n∑
j=1

[
E|W r

n,j |+ E|Lrp(j)|
]
,

from inequality (3.21), one has

n∑
j=1

∣∣∣∣∣∣∣∣Ap−1/2Wn,j
f −Ap−1/2Lp(j)f

∣∣∣∣∣∣∣∣(3.22)

×

pr/2
r!

 n∑
j=1

E|W r
n,j |+ E|Lrp(j)|

−1

≤ ε+ 2||f (r)||

 n∑
j=1

E
(
|W r

n,j |1{|Wn,j |≥δp−1/2}

)/ n∑
j

E|W r
n,j |


+ 2||f (r)||

 n∑
j=1

E
(
|Lrp(j)|1{|Lp(j)|≥δp−1/2}

)/ n∑
j

E|Lrp(j)|

 .

According to Lemma 2.2, from (3.22), we have∣∣∣∣∣∣∣∣A
p−1/2

νp∑
j=1

Wn,j

f −A
p−1/2

νp∑
j=1

Lp(j)
f

∣∣∣∣∣∣∣∣(3.23)

×

pr/2
r!

E

 νp∑
j=1

(
E|W r

n,j |+ E|Lrp(j)|
)−1

≤ ε+ 2||fr||E

 νp∑
j=1

E
(
|W r

n,j |1{|Wn,j |≥δp−1/2}

)/ νp∑
j

E|W r
n,j |
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+ 2||fr||E

 νp∑
j=1

E
(
|Lrp(j)|1{|Lp(j)|≥δp−1/2}

)/ νp∑
j

E|Lrp(j)|

 .

Finally, the validity of geometric Lindeberg’s condition (2.7) for the sequence

Wn,1,Wn,2, . . . and the sequences of i.i.d. random variables L
(1)
p , L

(2)
p , . . ., shows

that∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ = o

pr/2
r!

E

 νp∑
j=1

(
E|W r

n,j |+ E|Lrp(j)|
) .

The proof is complete. �

Theorem 3.4 (“Small–o” approximation estimate for geometric summation of
i.i.d. random variables). Under the hypotheses of Theorem 3.2 with assumption
that E(|Xr

n,1|) < +∞ for r ≥ 2, n ≥ 1, suppose that the following condition

(3.24) E
(
W k
n,1

)
= E

(
Lkp(1)

)
,

holds for 1 ≤ k ≤ r, r ≥ 2, j ≥ 1, n ≥ 1, where Wn,1 = Xn,1−µ+ p1/2µ and the
sequence of i.i.d. random variables Lp(1), Lp(2), . . ., is defined by Lemma 2.1.

Then, for any function f ∈ CrB(R),

(3.25)

∣∣∣∣∣∣∣∣A
p1/2

νp∑
i=1

Wn,1

f −ALµ,σf
∣∣∣∣∣∣∣∣ = o

(
p
r−2
2

[
E|W r

n,1|+ E|Lrp(1)|
])

as p→ 0.

Proof. Applying Trotter operator to Taylor series expansion (see [26], formula
(1.4.6), page 17) for f ∈ CrB(R), we see that∣∣∣∣∣Ef(p1/2Wn,1 + y)− f(y)−

r∑
i=1

f (k)(y)

k!
pk/2E(W k

n,1)

∣∣∣∣∣(3.26)

≤ E

{∣∣∣f (r)(η)− f (r)(y)
∣∣∣ pr/2
r!
|W r

n,1|1{|Wn,1|<δp−1/2}

}
+ E

{∣∣∣f (r)(η)− f (r)(y)
∣∣∣ pr/2
r!
|W r

n,1|1{|Wn,1|≥δp−1/2}

}
≤ ε

pr/2

r!
E|W r

n,1|+ 2
||f (r)||
r!

pr/2E
[
|W r

n,1|1{|Wn,1|≥δp−1/2}

]
.

Note that for the inequalities in (3.26) the estimations are used as follows:
Since f ∈ CrB(R), for each ε > 0 and each p ∈ (0, 1) there exists δ > 0 such

that |f (r)(η)− f (r)(y)| < ε for |x| < δp−1/2 and |f (r)(η)− f (r)(y)| ≤ 2||fr|| for
|x| ≥ δp−1/2.

Analogously, since f ∈ CrB(R), we get∣∣∣∣∣Ef(p1/2Lp(1) + y)− f(y)−
r∑

k=1

f (k)(y)

k!
pk/2ELkp(1)

∣∣∣∣∣(3.27)
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≤ E

{∣∣∣f (r)(η)− f (r)(y)
∣∣∣ pr/2
r!
|Lrp(1)|1{|Lp(1)|<δp−1/2}

}
+ E

{∣∣∣f (r)(η)− f (r)(y)
∣∣∣ pr/2
r!
|Lrp(1)|1{|Lp(1)|≥δp−1/2}

}
≤ ε

pr/2

r!
E|Lrp(1)|+ 2

||f (r)||
r!

pr/2E
[
|Lrp(1)|1{|Lp(1)|≥δp−1/2}

]
.

Combining (3.26) and (3.27), in view of (3.24), it follows that

sup
y∈R

∣∣∣∣Ef(p1/2Wn,1 + y)− Ef(p1/2Lp(1) + y)

∣∣∣∣
(3.28)

=

∣∣∣∣∣∣∣∣Ap1/2Wn,1
f −ALp(1)f

∣∣∣∣∣∣∣∣
≤ ε

pr/2

r!

[
E|W r

n,1|+ E|Lrp(1)|
]

+ 2
||f (r)||
r!

pr/2
(
E|W r

n,1|1{|Wn,1|≥δp−1/2} + E|Lrp(1)|1{|Lp(1)|≥δp−1/2}

)
.

Multiplying by r!p−r/2 and dividing by

[
E|W r

n,1|+ E|Lrp(1)|
]
> 0, one has

n

∣∣∣∣∣∣∣∣Ap1/2Wn,1
f −ALp(1)f

∣∣∣∣∣∣∣∣× (r!p−r/2n[E|W r
n,1|+ E|Lrp(1)|

])−1
(3.29)

≤ ε+ 2||f (r)||
[
E|W r

n,1|1{|Wn,1|≥δp−1/2}

/
E|W r

n,1|
]

+ 2||f (r)||
[
E|Lrp(1)|1{|Lp(1)|≥δp−1/2}

/
|Lrp(1)|

]
.

In view of Lemma 2.3, from (3.29), we obtain

E(νp)

∣∣∣∣∣∣∣∣Ap1/2Wn,1
f −ALp(1)f

∣∣∣∣∣∣∣∣× (pr/2r! E(νp)

[
E|W r

n,1|+ E|Lrp(1)|
])−1(3.30)

≤ ε+ 2||f (r)||
[
E|W r

n,1|1{|Wn,1|≥δp−1/2}

/
E|W r

n,1|
]

+ 2||f (r)||
[
E|Lrp(1)|1{|Lp(1)|≥δp−1/2}

/
|Lrp(1)|

]
.

Since E|W r
n,1| and E|Lrp(1)| are finite, therefore both terms

E|W r
n,1|1{|Wn,1|≥δp−1/2} → 0

and

E|Lrp(1)|1{|Lp(1)|≥δp−1/2} → 0
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when p→ 0. It follows that∣∣∣∣∣∣∣∣A
p1/2

νp∑
i=1

(Xn,i−µ+p1/2µ)
f −ALµ,σf

∣∣∣∣∣∣∣∣ = o

(
p
r−2
2

[
E|W r

n,1|+ E|Lrp(1)|
])

as p→ 0. The proof is complete. �

Remark 3.5. In case of r = 2, Theorem 3.4 deduces Theorem 3.2.

3.3. Large–O approximation estimates

The order of approximations of the distributions of geometric summation
for sequence of independent (not necessarily identically distributed) random
variables Xn,1, Xn,2, . . . , n ≥ 1, may be defined by following theorem.

Theorem 3.6 (“Large–O” approximation estimate for geometric summation
of independent (not necessarily identically distributed) random variables). Let
Xn,1, Xn,2, . . . be a sequence of independent (not necessarily identically distri-
buted) random variables with E|Xn,j |r < +∞, for r ≥ 3, j ≥ 1, n ≥ 1. Suppose
that for 1 ≤ j ≤ r − 1, r ≥ 3 the condition (3.17) holds. Furthermore, assume

that E

(
νp∑
j=1

E|W r
n,j |

)
< +∞ and E

(
νp∑
j=1

E|Lrp(j)|

)
< +∞ for r ≥ 3. Then,

for any function f ∈ Cr−1B (R), as p→ 0,∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣(3.31)

≤ 2p
r−1
2

(r − 1)!
ω
(
f (r−1);p

1/2
)
E

 νp∑
j=1

[
E|W r

n,j |+ E|Lrp(j)|+ 1

] ,

where Wn,j = Xn,j − µj + p1/2µj for n ≥ 1, j ≥ 1, and L
(1)
p , L

(2)
p , . . . are

i.i.d. random variables, defined by Lemma 2.1.
Let in addition f (r−1) ∈ Lip(α), 0 < α ≤ 1. Then∣∣∣∣∣∣∣∣A

p1/2
νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣(3.32)

= O

p(r−1+α)/2E
 νp∑
j=1

(
E|Wn,j |r + E|L(j)

p |r + 1
)

as p→ 0.

Proof. Analogously as in the beginning of the proof of Theorem 3.3, using
properties of the modulus of continuity ω(f (r−1); p1/2) and inequality (2.4), we
have ∣∣∣∣∣Ef(p1/2Wn,j + y)−

r−1∑
k=1

pk/2

i!
f (k)E(Wn,j)

k

∣∣∣∣∣(3.33)
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≤ p(r−1)/2

(r − 1)!
E
[
|f (r−1)(η)− f (r−1)(y)||Wn,j |r−1

]
≤ p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)

(
1 + 2E|W r

n,j |
)
,

where |η − y| < p1/2|x|.
Analogously, ∣∣∣∣∣Ef(p1/2Lp(j) + y)−

r−1∑
k=1

pk/2

k!
f (k)E(Lkp(j))

∣∣∣∣∣(3.34)

≤ p(r−1)/2

(r − 1)!
E
[
|f (r−1)(η)− f (r−1)(y)||Lr−1p (j)|

]
≤ p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)

(
1 + 2E|Lrp(j)|

)
,

where |η − y| < p1/2|x|. Combining (3.33) and (3.34) with assumption (3.17)

gives, for f ∈ C(r−1)
B (R),∣∣∣Ef(p1/2Wn,j + y)− Ef(p1/2Lp(j))

∣∣∣(3.35)

≤ 2p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)

[
E|W r

n,j |+ E|Lrp(j)|+ 1

]
.

Then, in view of (3.35), for f ∈ Cr−1B (R), it follows that
n∑
j=1

∣∣∣∣∣∣∣∣Ap1/2Wn,j
f −A

p1/2L
(j)
p
f

∣∣∣∣∣∣∣∣(3.36)

≤ 2p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)

n∑
j=1

[
E|W r

n,j |+ E|Lrp(j)|+ 1

]
.

According to Lemma 2.2, from (3.36) and based on assumption that νp, Xn,j ,
Lp(j) are independent for all n ≥ 1, j ≥ 1 and for each p ∈ (0, 1), we have for

f ∈ Cr−1B (R),

E

( νp∑
j=1

∣∣∣∣∣∣∣∣Ap1/2Wn,j
f −A

p1/2L
(j)
p
f

∣∣∣∣∣∣∣∣)(3.37)

≤ 2p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)E

 νp∑
j=1

[
E|W r

n,j |+ E|Lrp(j)|+ 1

] .

Finally, using properties of Trotter operator, from inequality (3.37), for f ∈
Cr−1B (R), we obtain the final estimate as p→ 0,∣∣∣∣∣∣∣∣A

p1/2
νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣
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≤ 2p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)E

 νp∑
j=1

[
E|W r

n,j |+ E|Lrp(j)|+ 1
] .

It is clear that, if f (r−1) ∈ Lip(α), (0 < α ≤ 1), then∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣

= O

p(r−1+α)/2E
 νp∑
j=1

(
E|W r

n,j |+ E|Lrp(j)|+ 1

)
as p→ 0. The proof is complete. �

Theorem 3.7 (“Large–O” approximation estimate for geometric summation of
i.i.d. random variables). Under the hypotheses of Theorem 3.4 with assumption
that E(|Xn,1|r) < +∞ for some fixed r ≥ 3, r ∈ N, assume that for 1 ≤ j ≤ r,
r ≥ 3, the condition (3.26) holds. Then, for any function f ∈ Cr−1B (R),

(3.38)

∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ = O

(
p(r−3)/2

(r − 1)!
ω(f (r−1), p1/2)

)
as p→ 0.

If, in addition f (r−1) ∈ Lip(α), 0 < α ≤ 1, then

(3.39)

∣∣∣∣∣∣∣∣A
p1/2

νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ = O

(
p(r−3+α)/2

(r − 1)!

)
as p→ 0.

Proof. Analogously as in the beginning of the proof of Theorem 3.4, using
properties of the modulus of continuity ω(f (r−1); p1/2), we have∣∣∣∣∣Ef(p1/2Wn,1 + y)−

r−1∑
k=1

pk/2

k!
f (k)E(W k

n,1)

∣∣∣∣∣(3.40)

≤ p(r−1)/2

(r − 1)!
E
[
|f (r−1)(η)− f (r−1)(y)||W r−1

n,1 |
]

≤ p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)(1 + 2E|W r

n,1|).

Analogously, ∣∣∣∣∣Ef(p1/2L(1)
p + y)−

r−1∑
k=1

pk/2

k!
f (k)ELkp(1)

∣∣∣∣∣(3.41)

≤ p(r−1)/2

(r − 1)!
E
[
|f (r−1)(η)− f (r−1)(y)||Lr−1p (1)|

]
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≤ p(r−1)/2

(r − 1)!
ω(f (r−1); p1/2)(1 + 2E|Lrp(1)|).

Combining (3.40) and (3.41) with assumption (3.24) and in view of Lemma 2.3,

for f ∈ C(r−1)
B (R), it may be concluded that∣∣∣∣∣∣∣∣A

p1/2
νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣(3.42)

≤ E(νp)

∣∣∣∣∣∣∣∣Tp1/2Wn,1
f − Tp1/2L1

p
f

∣∣∣∣∣∣∣∣
≤ 2

p(r−3)/2

(r − 1)!
ω(f (r−1), p1/2)

[
E|W r

n,1|+ E|Lrp(1)|+ 1
]
.

According to boundness of E|W r
n,1| and E|Lrp(1)|, when p→ 0, it follows that∣∣∣∣∣∣∣∣A

p1/2
νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ = O

(
p(r−3)/2

(r − 1)!
ω(f (r−1), p1/2)

)
.

In view of f (r−1) ∈ Lip(α), 0 < α ≤ 1, from Definition 2.2, when p→ 0, it may
be concluded that,∣∣∣∣∣∣∣∣A

p1/2
νp∑
j=1

Wn,j

f −ALµ,σf
∣∣∣∣∣∣∣∣ = O

(
p(r−3+α)/2

(r − 1)!

)
.

This finishes the proof. �
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Appendix

For p ∈ (0, 1), A random variable νp is said to have geometric distribution
with mean p−1, denoted by νp ∼ Geo(p), if its probability distribution is given
by

P(νp = k) = p(1− p)k−1, k = 1, 2, . . .

Proposition A1. Let νp ∼ Geo(p). Then

νp
P−→ +∞ as p→ 0+.

Proof. Let M be an arbitrary integer number. Then

P(νp > M) = 1− P(νp ≤M) = 1−
M∑
k=1

P(νp = k)

= 1−
M∑
k=1

{
p(1− p)k−1

}
= 1− p

1− p

M∑
k=1

(1− p)k.
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It is clear that

M∑
k=1

(1− p)k =
(1− p)

[
(1− p)M − 1

]
1− (1− p)

=
1− p
p

[
(1− p)M − 1

]
.

Therefore

P(νp > M) = 1− p

1− p

M∑
k=1

(1− p)k

= 1− p

1− p
× 1− p

p

[
(1− p)M − 1

]
= 2− (1− p)M −→ 1 khi p→ 0+.

Thus

νp
P−→ +∞ khi p→ 0+. �

Proposition A2. Let Xn,1, Xn,2, . . . be a sequence of independent random
variables with E|X2

n,j | < +∞. Let νp ∼ Geo(p), p ∈ (0, 1), be a geometric

random variable with mean p−1, independent of Xn,j for n ≥ 1, j ≥ 1. Suppose
that, for δ > 0, the geometric Lindeberg condition

E

( νp∑
j=1

EX2
n,j1{|Xn,j |≥δp−1/2}

/ νp∑
j=1

EX2
n,j

)
= o(1) as p→ 0

holds. Then
∞∑
j=1

P (νp = j)EX2
n,j1{|Xn,j |≥δp−1/2} = o(1) as p→ 0.

Proof. It is clear that

0 ≤
∞∑
j=1

P (νp = j)

( n∑
j=1

EX2
n,j1{|Xn,j |≥δp−1/2}

/ n∑
j=1

EX2
n,j

)

≤ E
( νp∑
j=1

EX2
n,j1{|Xn,j |≥δp−1/2}

/ νp∑
j=1

EX2
n,j

)
.

In view of finiteness of EX2
n,j , the proof is straightforward. �
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