DOI QR코드

DOI QR Code

An experimental study on the correlation of hydraulic mean radius and hydrodispersive parameters in rockfill porous media

자갈 다공성매질에서 수리평균반경과 수리분산 매개변수의 상관성에 관한 실험적 연구

  • Han, Ilyeong (Technical Research Center, Biryong Corporation) ;
  • Lee, Jaejoung (Technical Research Center, Biryong Corporation) ;
  • Kim, Gyoo Bum (Department of Construction Safety and Disaster Prevention, Daejeon University)
  • 한일영 ((주)비룡 기술연구소) ;
  • 이재정 ((주)비룡 기술연구소) ;
  • 김규범 (대전대학교 건설안전방재공학과)
  • Received : 2021.07.12
  • Accepted : 2021.08.30
  • Published : 2021.11.30

Abstract

The mechanical dispersion which dominates solute transport in porous media is caused by the difference in flow velocity within pores. Longitudinal dispersion coefficient and longitudinal dispersivity that are hydro-dispersive parameters of advection-dispersion equation can only be obtained by experiment. Hydraulic mean radius that represents the amount and intensity of flowing water within pores can be obtained by the formula using the factors for physical properties. A slug injection test was conducted and a power type empirical formula for obtaining a longitudinal dispersivity using a hydraulic mean radius in rockfill porous media was derived. It is possible to obtain the longitudinal dispersivity depending on transport distance because it contains a formula for a scale constant, and expected to be applicable to waterways filled with homogeneous gravel and small flow rate.

다공성 매질에서 오염물 이동에 지배적인 기작인 역학적 분산은 공극 내 유속 차이에 의해서 발생한다. 종분산계수와 종분산지수는 이송확산 모형의 수리분산 매개변수이며, 실험을 통하여 얻어야만 한다. 수리평균반경은 공극 내 물의 흐름 양의 크기와 강도를 표현할 수 있으며, 매질의 물리적 특성인자를 이용하여 계산할 수 있다. 본 연구는 순간주입 추적자실험을 통하여 자갈 다공성매질에서 수리평균반경을 이용하여 종분산지수를 구할 수 있는 거듭제곱형의 경험식을 도출하였다. 경험식은 스케일상수 계산식이 포함되어 있어 이동거리에 따른 종분산지수의 산정이 가능하며, 소규모 유량의 균질한 자갈로 구성된 수로에 적용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 환경부가 출연하고 한국환경산업기술원에서 위탁 시행한 2021년 수요대응형 물공급사업의 연구비 지원(과제번호 2018002650002)에 의해 수행되었습니다.

References

  1. Fetter, C.W. (1993). Contaminant hydrogeology. Macmillan Publishing Company, NY, U.S., p. 50.
  2. Gelhar, L.W., Mantoglou, A., Welty, C., and Rehfeldt, K.R. (1985). A review of field-scale physical solute transport processes in saturated and unsaturated porous media. EPRI EA-4190 Project 2485-5, Electric Power Research Institute, Palo Alto, CA, U.S., pp. 1-48.
  3. Liang, X., Zhan, H., Liu, J. Dong, G., Zhang, Y. (2018). "A simple method of transport parameter estimation for slug injecting tracer tests in porous media." Science of Total Environment, Vol. 644, pp. 1536-1546. https://doi.org/10.1016/j.scitotenv.2018.06.330
  4. McCorquodale, J.A., Hannoura, A.A., and Naser, M.S. (1978). "Hydraulic conductivity of rockfill." Journal of Hydraulic Research, Vol. 16, pp. 123-137. https://doi.org/10.1080/00221687809499625
  5. Neuman, S.P. (1990). "Universal scaling of hydraulic conductivities and dispersivities in geologic media." Water Resources Research, Vol. 26, No. 8, pp. 1749-1758. https://doi.org/10.1029/WR026i008p01749
  6. Neuman, S.P., and Federico, V.D. (2003). "Multifaceted nature of hydrogeologic scaling and its interpretation." Review of Geophysics, Vol. 41, No. 3, pp. 4.1-4.31.
  7. Philip, B.B., Hanadi, S.R., and Charles, J.N. (1994). Ground water contamination. PTR prentice-hall Englewood Cliffs, New Jersey, U.S., pp. 121-123.
  8. Pickens, J.F., and Grisak, G.E. (1981). "Scale-dependent dispersion in a stratified granular aquifer." Water Resources Research, Vol. 17, No. 4, pp. 1191-1211. https://doi.org/10.1029/WR017i004p01191
  9. Sabin, C.W., and Hansen, D. (1994). "The effects of particle shape and surface roughness on the hydraulic mean radius of a porous medium consisting of quarried rock." Geotechnical Testing Journal, GTJODJ, Vol. 17, No. 1, pp. 43-49. https://doi.org/10.1520/GTJ10071J
  10. Sauty, J.P. (1980). "An analysis of hydrodispersive transfer in aquifers." Water Resources Research, Vol. 16, No. 1, pp. 145-158. https://doi.org/10.1029/WR016i001p00145
  11. Schulze, M.D. (2005). "Longitudinal dispersivity data and implications for scaling behavior." Ground Water, Vol. 43, No. 3, pp. 443-456. https://doi.org/10.1111/j.1745-6584.2005.0051.x
  12. Schulze, M.D., and Cherkauer, D.S. (1997). "Method developed for extrapolating scale behavior." EOS, Transactions, AGU, Vol. 78, No. 1, p. 3. https://doi.org/10.1029/97EO00005
  13. Seo, I. W., and Cheong, T.S (1998). "Predicting longitudinal dispersion coefficient in natural stream." Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 1, pp. 25-32. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25)
  14. Shih, D.C., Chen, Y.G., Lin, G.F., and Wu, Y.M. (2009). "Uncertainty propagation of hydrodispersive transfer in an aquifer: An illustration of one-dimensional contaminant transport with slug injection." Stochastic Environmental Research and Risk Assessment, Vol. 23, pp. 613-620. https://doi.org/10.1007/s00477-008-0246-2
  15. Taylor, D.W. (1948). Fundamentals of soil mechanics. Wiley, NY, U.S., p. 122.
  16. Trenchlesspedia (2021). Hydraulic radius, accessed 8 July 2021,
  17. Wikimedia foundation (2021). USA, accessed 8 July 2021, .
  18. Wilkins, J.K. (1956). "Flow of water through rock fill and its application to the design of dams." Proceedings, Second Austrailian-New zealand Conference on Soil Mechanics and Foundation Engineering, New Zealand Institution of Engineers, Christchurch, New Zealand, pp. 141-149.
  19. Zingg, T. (1935). "Contribution to the gravel analysis." Petrographic Messages, Vol. 15, pp. 39-140.