Acknowledgement
This work was supported by the Yonsei Research Fund (2019-22-0020) and the National Research Foundation of Korea (NRF) Ministry of Science, ICT and Future Planning NRF-2016R1A5A1010764 and NRF-2020R1A2C101232911.
References
- Bhat AH, Maity S, Giri K and Ambatipudi K (2019) Protein glycosylation: sweet or bitter for bacterial pathogens? Crit Rev Microbiol 45, 82-102 https://doi.org/10.1080/1040841x.2018.1547681
- Moremen KW, Tiemeyer M and Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448-462 https://doi.org/10.1038/nrm3383
- Pinho SS and Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15, 540-555 https://doi.org/10.1038/nrc3982
- Rudd P, Elliott T, Cresswell P, Wilson I and Dwek R (2001) Glycosylation and the immune system. Science 291, 2370-2376 https://doi.org/10.1126/science.291.5512.2370
- Sjogren J and Collin M (2014) Bacterial glycosidases in pathogenesis and glycoengineering. Future Microbiol 9, 1039-1051 https://doi.org/10.2217/fmb.14.71
- Nothaft H and Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8, 765-778 https://doi.org/10.1038/nrmicro2383
- Szymanski CM and Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3, 225-237 https://doi.org/10.1038/nrmicro1100
- Poole J, Day CJ, von Itzstein M, Paton JC and Jennings MP (2018) Glycointeractions in bacterial pathogenesis. Nat Rev Microbiol 16, 440-452 https://doi.org/10.1038/s41579-018-0007-2
- Jank T, Belyi Y and Aktories K (2015) Bacterial glycosyltransferase toxins. Cell Microbiol 17, 1752-1765 https://doi.org/10.1111/cmi.12533
- Lu Q, Li S and Shao F (2015) Sweet talk: protein glycosylation in bacterial interaction with the host. Trends Microbiol 23, 630-641 https://doi.org/10.1016/j.tim.2015.07.003
- Sudhakara P, Sellamuthu I and Aruni AW (2019) Bacterial sialoglycosidases in virulence and pathogenesis. Pathogens 8, 39 https://doi.org/10.3390/pathogens8010039
- Grewal PK, Uchiyama S, Ditto D et al (2008) The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 14, 648-655 https://doi.org/10.1038/nm1760
- Chen GY, Chen X, King S et al (2011) Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29, 428-435 https://doi.org/10.1038/nbt.1846
- Paulson JC and Kawasaki N (2011) Sialidase inhibitors DAMPen sepsis. Nat Biotechnol 29, 406-407 https://doi.org/10.1038/nbt.1859
- Kurniyati K, Zhang W, Zhang K and Li C (2013) A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochaete Treponema denticola. Mol Microbiol 89, 842-856 https://doi.org/10.1111/mmi.12311
- Collin M and Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20, 3046-3055 https://doi.org/10.1093/emboj/20.12.3046
- Naegeli A, Bratanis E, Karlsson C et al (2019) Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 216, 1615-1629 https://doi.org/10.1084/jem.20190293
- Collin M and Fischetti VA (2004) A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B. J Biol Chem 279, 22558-22570 https://doi.org/10.1074/jbc.M402156200
- Garbe J, Sjogren J, Cosgrave EF et al (2014) EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PLoS One 9, e91035 https://doi.org/10.1371/journal.pone.0091035
- Renzi F, Manfredi P, Mally M, Moes S, Jeno P and Cornelis G (2011) The N-glycan glycoprotein deglycosylation complex (Gpd) from Capnocytophaga canimorsus deglycosylates human IgG. PLoS Pathog 7, 17
- Ding J, Pan X, Du L et al (2019) Structural and functional insights into host death domains inactivation by the bacterial arginine GlcNAcyltransferase effector. Mol Cell 74, 922-935 https://doi.org/10.1016/j.molcel.2019.03.028
- Gao X, Wang X, Pham TH et al (2013) NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe 13, 87-99 https://doi.org/10.1016/j.chom.2012.11.010
- Scott NE, Giogha C, Pollock GL et al (2017) The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD). J Biol Chem 292, 17337-17350 https://doi.org/10.1074/jbc.M117.805036
- Jank T, Bogdanovic X, Wirth C et al (2013) A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nat Struct Mol Biol 20, 1273-1280 https://doi.org/10.1038/nsmb.2688
- Belyi Y, Niggeweg R, Opitz B et al (2006) Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103, 16953-16958 https://doi.org/10.1073/pnas.0601562103
- Tzivelekidis T, Jank T, Pohl C et al (2011) Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases. PLoS One 6, e29525 https://doi.org/10.1371/journal.pone.0029525
- Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A and Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711-713 https://doi.org/10.1038/nature09397
- Aktories K, Schwan C and Jank T (2017) Clostridium difficile toxin biology. Annu Rev Microbiol 71, 281-307 https://doi.org/10.1146/annurev-micro-090816-093458
- Yang M, Li FG, Xie XS, Wang SQ and Fan JM (2014) CagA, a major virulence factor of Helicobacter pylori, promotes the production and underglycosylation of IgA1 in DAKIKI cells. Biochem Biophys Res Commun 444, 276-281 https://doi.org/10.1016/j.bbrc.2014.01.050
- Zhu TT, Wang L, Wang HL, He Y, Ma X and Fan JM (2016) Helicobacter pylori participates in the pathogenesis of IgA nephropathy. Ren Fail 38, 1398-1404 https://doi.org/10.1080/0886022X.2016.1216713
- Vaishnava S, Hooper LV (2007) Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe 2, 365-367 https://doi.org/10.1016/j.chom.2007.11.004
- Yang WH, Heithoff DM, Aziz PV et al (2017) Recurrent infection progressively disables host protection against intestinal inflammation. Science 358, eaao5610 https://doi.org/10.1126/science.aao5610
- Yang WH, Heithoff DM, Aziz PV et al (2018) Accelerated aging and clearance of host anti-inflammatory enzymes by discrete pathogens fuels sepsis. Cell Host Microbe 24, 500-513 https://doi.org/10.1016/j.chom.2018.09.011
- Barel M, Harduin-Lepers A, Portier L, Slomianny MC and Charbit A (2016) Host glycosylation pathways and the unfolded protein response contribute to the infection by Francisella. Cell Microbiol 18, 1763-1781 https://doi.org/10.1111/cmi.12614
- Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 https://doi.org/10.1126/science.1254009
- Goto Y, Uematsu S and Kiyono H (2016) Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 17, 1244-1251 https://doi.org/10.1038/ni.3587
- Pham TA, Clare S, Goulding D et al (2014) Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16, 504-516
- Pickard JM, Maurice CF, Kinnebrew MA et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638-641 https://doi.org/10.1038/nature13823