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Protein glycosylation is a common post-translational modifica-
tion found in all living organisms. This modification in bacterial 
pathogens plays a pivotal role in their infectious processes in-
cluding pathogenicity, immune evasion, and host-pathogen inter-
actions. Importantly, many key proteins of host immune systems 
are also glycosylated and bacterial pathogens can notably mo-
dulate glycosylation of these host proteins to facilitate patho-
genesis through the induction of abnormal host protein activity 
and abundance. In recent years, interest in studying the regu-
lation of host protein glycosylation caused by bacterial patho-
gens is increasing to fully understand bacterial pathogenesis. 
In this review, we focus on how bacterial pathogens regulate 
remodeling of host glycoproteins during infections to promote 
the pathogenesis. [BMB Reports 2021; 54(11): 541-544]

INTRODUCTION

Protein glycosylation, a well-known post-translational modifi-
cation found in all living organisms, affects a wide range of 
protein properties including folding, stability, enzyme activity, 
interactions, signal transduction, tissue targeting, and resistan-
ce to proteolysis (1-3). Protein glycosylation plays an essential 
role in diverse functions of the immune system. Therefore, gly-
cans are reasonable targets for bacterial pathogenesis. Glycans 
in the immune system have various roles such as protecting 
proteins from proteases, regulating protein interactions, and 
contributing to protein activity and stability (4, 5). In eukaryote 
organisms, protein glycosylation has two major forms: N-linked 
and O-linked glycosylation. Both glycosylation systems have 
been also identified in pathogenic bacteria (6, 7). Glycosylated 
molecules such as glycoproteins, capsular polysaccharides, and 
lipooligosaccharides or lipopolysaccharides on pathogenic bac-
teria are presented to the host. They are involved in the colo-

nization, pathogenicity, and virulence (8). Glycans on the host 
cell surface are used by many bacterial pathogens for adhesion, 
nutrients, and targets of toxins (1, 8-10). Recently, studies on 
the mechanisms by which pathogenic bacteria can regulate 
host glycosylation are increasing to understand the pathogenic 
mechanism in host immune system. Bacterial glycosyltransfe-
rases and glycosidases can modify host protein glycosylation 
for the pathogenic process. Furthermore, pathogenic bacterial 
infection can modify host glycans by activating host glycosyl-
transferases and glycosidases. In this short review, we will dis-
cuss how bacterial infections remodel host protein glycosyla-
tion that has a pivotal role in bacterial pathogenesis and host 
immune system.

ALTERATIONS IN HOST GLYCOSYLATION BY 
BACTERIAL GLYCOSYLTRANSFERASES AND 
GLYCOSIDASES

Bacterial pathogens can modify host protein glycosylation using 
various bacterial glycosyltransferases and glycosidases (Table 
1). The modification of host glycans gives bacterial pathogens 
host adaptation functions including nutrients acquisition and 
cell attachment (8). Neuraminidases (sialidases) are well-known 
modifying enzymes that can cleave sialic acid from glycans. 
Many types of bacteria produce neuraminidase with various 
specificities (11). Streptococcus pneumoniae, a common cause 
of sepsis, can produce neuraminidase to induce rapid desia-
lylation and clearance of platelets during systemic S. pneumo-
niae infection (12). Host danger-associated molecular patterns 
(DAMPs) can diminish pro-inflammatory TLR signaling by form-
ing a complex with sialylated CD24 and SiglecG/10. How-
ever, sialidases from S. pneumoniae can disrupt the CD24- 
SiglecG/10 inhibitory complex and lead to elevated cyto-
kine production through cleaving sialic acids on CD24 during 
S. pneumoniae sepsis (13, 14). A cell surface neuraminidase 
of Treponema denticola, an oral spirochete, can remove sialic 
acids on human serum glycoprotein for bacterial growth (15).

Besides bacterial neuraminidases that are well characterized, 
other bacterial glycosidases can also modify host glycoproteins. 
Endoglycosidase S (EndoS) from Streptococcus pyogenes, a 
cause of necrotizing fasciitis and streptococcal toxic shock, can 
hydrolyze glycans from host IgG to evade host adaptive im-
munity (16, 17). EndoE from Enterococcus faecalis, a cause of 
nosocomial infection, can cleave glycans of host IgG, RNase B, 
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Table 1. Bacterial glycosyltransferases and glycosidases discussed in this review

Bacterial pathogen Bacterial glycosyltransferase or glycosidase Host substrate Reference

Streptococcus pneumoniae Sialidase Platelets, CD24 (12-14)
Treponema denticola Sialidase Serum glycoprotein (15)
Streptococcus pyogenes Endoglycosidase S (EndoS) IgG (16, 17)
Enterococcus faecalis Endoglycosidase E (EndoE) IgG, RNase B, lactoferrin (18, 19)
Capnocytophaga canimorsus Endo-β-N-acetylglucosaminidase (GpdG) IgG (20)
Enteropathogenic E. coli arginine glycosyltransferase NleB Fas-associated via death domain (FADD) proteins (21-23)
Photorhabdus asymbiotica PaTox Rho GTPases (24)
Legionella pneumophila Legionella glucosyltransferase eEF1A (25, 26)
Clostridium difficile TcdA and TcdB glucosyltransferase Rho (RhoA/B/C), Rac (Rac1–3), and Cdc42 (27, 28)

Table 2. Bacterial pathogen-induced activation of host glycosyltransferases and glycosidases discussed in this review

Bacterial pathogen Host glycosyltransferase or 
glycosidase Host substrate Reference

Helicobacter pylori β1,3-galactosyltransferase IgA (29, 30)
Salmonella enterica Typhimurium Sialidase Intestinal alkaline phosphatase (32)
Salmonella, E. coli Sialidase Circulating alkaline phosphatase isozymes (33)
Francisella tularensis B3GNT2, B3GNT3, B4GALT1, 

B4GALT3, B4GALT5, C1GALT1, 
GALNT2, GALNT11, ST3GAL1, 
Hexosaminidase A, EDEM1, 
EDEM2, EDEM3, GANAB

Various N-glycosyproteins and O-glycosylproteins (34)

Salmonella typhimurium, 
Helicobacter bilis, 
Citrobacter rodentium

Fucosyltransferase 2 Intestinal epithelial glycoproteins (35-38)

and lactoferrin for modulating host immune responses and 
bacterial growth (18, 19). Capnocytophaga canimorsus is de-
tected in the saliva of healthy dogs and cats. However, it can 
cause illness in humans. Endo-β-N-acetylglucosaminidase (GpdG) 
of the N-glycan glycoprotein deglycosylation complex from C. 
canimorsus can deglycosylate human IgG to use released 
sugars as nutrients for bacterial growth (20). 

Enteropathogenic E. coli use type III secretion systems for trans-
locating effector proteins into host cells. One such effector is 
arginine glycosyltransferase NleB that catalyzes arginine Glc-
NAcylation of Fas-associated via death domain (FADD) pro-
teins to block host defense (21-23). Entomopathogenic Photo-
rhabdus asymbiotica is an emerging human pathogen. P. asym-
biotica protein toxin (PaTox) with a glycosyltransferase domain 
can induce tyrosine-O-glycosylation of host Rho GTPases by 
using UDP-GlcNAc, resulting in actin disassembly, inhibition 
of phagocytosis, and toxicity toward host cells (24). Legionella 
pneumophila infection causes Legionnaires’ disease pneumonia. 
Legionella glucosyltransferase proteins are Legionella virulence 
factors with UDP-glucosyltransferase activity. They can inhibit 
host protein synthesis through eEF1A (eukaryotic elongation 
factor 1A) glucosylation, resulting in host cell death (25, 26). 
Clostridium difficile is associated with hospital-acquired infect-

ious diarrhea and pseudomembranous colitis. It produces toxin 
A (TcdA) and toxin B (TcdB) as predominant virulence factors 
(27). TcdA and TcdB are internalized into host cells. The gly-
cosyltransferase domain of these toxins is then released into 
the cytosol, where Rho GTPases including Rho (RhoA/B/C), Rac 
(Rac1–3), and Cdc42 are mono-O-glucosylated and inactivated, 
resulting in impaired epithelial barrier functions, inflammation, 
and host cell death (28).

REMODELING OF HOST GLYCOPROTEINS BY THE 
ACTIVATION OF HOST GLYCOSYLTRANSFERASES 
AND GLYCOSIDASES DURING BACTERIAL 
INFECTIONS

Bacterial pathogens can modify host protein glycosylation by 
modulating the expression of numerous host glycosyltransferases 
and glycosidases (Table 2). Helicobacter pylori, a cause of 
gastrointestinal diseases such as chronic gastritis and gastric 
cancer, is related to IgA nephropathy. Cytotoxin associated 
gene A protein (CagA), a major virulence factor of Helicobacter 
pylori, can promote abnormal glycosylation of host IgA by 
downregulating host β-1,3-galactosyltransferase. Abnormal glyco-
sylation of IgA is involved in the pathogenesis of IgA nephro-
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pathy (29, 30). Recurrent nonlethal gastric infections of Salmo-
nella enterica Typhimurium, a leading cause of human food 
poisoning, can induce chronic intestinal inflammation in a 
mouse model. The disease mechanism involves the deficiency 
of intestinal alkaline phosphatase (IAP), which can dephospho-
rylate and detoxify the lipopolysaccharide (LPS) endotoxin 
produced by commensal Gam-negative microbiota in the host 
(31, 32). Recurrent S. enterica Typhimurium reinfection can 
induce host endogenous neuraminidase activity, which accele-
rates the desialylation and clearance of IAP. The administra-
tion of zanamivir, an antiviral neuraminidase inhibitor, has 
therapeutic effect through maintaining IAP abundance and 
function (32). In mouse experimental sepsis elicited by Gram- 
negative Salmonella and E. coli, a host protective mechanism 
through LPS detoxification by circulating alkaline phosphatase 
(AP) isozymes is debilitated through host neuraminidase induc-
tion (33). Increased neuraminidase activity can accelerate the 
clearance of AP isozymes mediated by the hepatic lectin Ashwell- 
Morell receptor. The inhibition of neuraminidase activity can 
diminish inflammation and promote host survival (33). The 
bacterial pathogen Francisella tularensis is an agent of zoono-
tic disease tularemia. It can modulate numerous host glyco-
syltransferases and glycosidases such as β-N-acetylglucosaminyl-
transferase B3GNT2, B3GNT3, β-galactosyltransferase B4GALT1, 
B4GALT3, B4GALT5, N-acetylgalactosamine-β-galactosyltrans-
ferase C1GALT1, N-acetylgalactosaminyltransferase GALNT2, 
GALNT11, α-2,3-Sialyltransferase ST3GAL1, Hexosaminidase 
A, ER Degradation Enhancing Alpha-Mannosidase Like Protein 
EDEM1, EDEM2, EDEM3, and glucosidase II α subunit GANAB. 
It can also modify various N-glycosyproteins and O-glycosyl-
proteins, including the multifunctional ER chaperone binding 
immunoglobulin protein (BiP) (34). Pathogenic bacteria such 
as Salmonella typhimurium, Helicobacter bilis, and Citrobacter 
rodentium can induce intestinal epithelial fucosyltransferase 2 
expression and α1,2-fucosylation. The intestinal epithelial α1,2- 
fucosylation is important for various immune reactions, inclu-
ding host defense and host-commensal bacteria interplay (35-38).

CONCLUDING REMARKS

A large number of pathogenic bacterial glycosyltransferases 
and glycosidases have been discovered and characterized. 
Functions of these enzymes on glycans of host key proteins in 
the immune system contribute to the pathogenesis of bacterial 
pathogens through increased adhesion, nutrient acquisition, 
targets of bacterial toxins, evading the immune response, and 
persisting bacterial survival in the host. In addition, bacterial 
pathogens can modify glycans on many key proteins in host 
immune system through inducing various host glycosyltrans-
ferases and glycosidases, thus contributing to the pathogenesis. 
Alteration in protein glycosylation can affect protein activity, 
abundance, stability, and interaction with other proteins 
regardless whether glycosyltransferases and glycosidases come 
from bacterial pathogens or hosts. Thus, it is an essential step 

to analyze remodeling of host glycoprotein during bacterial 
infection to fully understand the pathogenesis. Although it is 
difficult to understand bacterial modulation of host glycosyla-
tion while bacterial infections induce various host glycosyltrans-
ferases and glycosidases, recent advances in glycoengineering 
make it possible to thoroughly analyze remodeling of host 
glycans. Taken together, this study about remodeling of host 
glycoproteins during bacterial infection provides potentially a 
new insight into bacterial pathogenesis and an opportunity to 
develop novel therapeutic and preventive strategies to fight 
infectious diseases.
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