DOI QR코드

DOI QR Code

Comparison of Atmospheric Environmental Factors between Farms with Difference in Paprika Productivity

파프리카 생산성 차이 농가 간 지상부 환경요인 비교

  • 김가영 (원광대학교 원예학과) ;
  • 우승미 (원광대학교 원예산업학부) ;
  • 김호철 (원광대학교 원예산업학부)
  • Received : 2021.10.18
  • Accepted : 2021.11.02
  • Published : 2021.11.30

Abstract

Paprika productivity is different even in the same quality greenhouse and in the same region. These differences are known to due to differences in various environmental factors. This study was conducted to investigate the difference in the level of various environmental factors between high-productivity (HPF) and low-productivity (LPF) greenhouses. The largest difference between the two greenhouses in the daily or weekly average values of major environmental factors was the CO2 concentration, but the LPF was higher than the HPF, so it was not determined as a factor for the difference in productivity. Correlation analysis among 14 environmental factors showed a high correlation among irradiation or related factors in moisture. The regression coefficients of the linear regression model between vapor pressure deficit and relative humidity were -0.0202kpa in HPF and -0.0262kpa in LPF. In particular, in February and March, the vapor pressure deficit in LPF was 1.5kpa or more, and the cumulative vapor pressure deficit compared to the cumulative irradiation at the early period of cultivation increased rapidly. The reason for the low productivity in LPF is thought to be that the plant was affected by moisture stress due to high vapor pressure deficit and transpiration under low irradiation conditions in the early period of cultivation and in winter.

파프리카 생산성은 동일한 품질 온실, 지역 간에 차이를 나타내고 있다. 이러한 차이는 다양한 환경요인의 차이에서 오는 것으로 알려져 있다. 본 연구는 동일 지역에서 동일 품질 온실 중에서 생산성이 높거나(HPF) 낮은(LPF) 온실 간 내부 환경요인의 수준 차이를 알아보고자 수행되었다. 주요 환경요인들의 일 또는 주의 평균값에서 두 온실 간에 가장 큰 차이를 보인 것은 CO2 농도였지만, LPF에서 HPF보다 매우 높아 생산성 차이 요인으로 판정하기 않았다. 14개 환경 요인들 간 상관분석에서 광량과 수분 관련 요인들 간에 상관성을 나타내었다. 증산량에 관련된 수증기압포차와 상대습도 간 선형회귀모형의 회귀계수는 HPF에서 -0.0202kpa, LPF에서는 -0.0262kpa로 나타났다. 특히 2월과 3월에는 LPF에서 VPD가 1.5kpa 이상이었고, 재배 초기에 누적 광량 대비 누적 수증기압포차의 급격한 증가가 나타났다. 따라서 LPF에서 생산성이 낮은 원인은 재배 초기와 겨울철에 적은 광량 조건에서 높은 VPD에 의한 높은 증산량이 식물체에게 수분 스트레스를 주었기 때문으로 판단된다.

Keywords

Acknowledgement

본 연구는 2021년 농림축산식품부 연구사업(과제번호: 320101-03-2-SB020) 지원에 의해 수행되었음.

References

  1. Korea Agro-Fisheries and Food Trade Corporation (KAFFTC) "Kati 'export and import information of paprika'. (in Korean) https://www.kati.net/product/basisInfo.do?lcdCode=MD147, 2020
  2. J.Y. Lee, K.D. Jung, K.H. Ryu, and S.Y. Park, "A Study on the Analysis of Regional Tourism in Uijeongbu Using Big Data," J. Convergence on Culture Technology, Vol. 6, No. 1, pp. 413-418, doi.org/10.17703/JCCT.2020.6.1.413
  3. S.W. Lee and M.Y. Han, "Utilization and Analysis of Big-data," International Journal of Advanced Culture Technology, Vol.7, No.4, pp. 255-259, 2019, doi.org/10.17703/IJACT.2019.7.4.255
  4. W.J. Jeong, D.J. Myoung, and J.H. Lee, "Comparison of climatic conditions of sweet pepper's greenhouse between Korea and Netherlands," J. Bio-Environ. Control, Vol. 18, No. 3, pp. 244-252, 2009
  5. L.F.M. Marcelis, E. Heuvelink, L.R. Baan Hofman-Eijer, J. den Bakker, and L.B. Xue, "Flower and fruit abortion in sweet pepper in relation to source and sink strength," J. Exp. Bot. Vol. 55, pp. 2261-2268, 2004, doi.org/10.1093/jxb/erh245
  6. Y.M. Park, "Leaf temperature characteristics being affected by light regimes", J. Environmental Sci. Vol. 20, pp. 1599-1605, 2011, doi.org/10.5322/JES.2011.20.12.1599
  7. R.D. Jackson, S.B. Idso, R.J. Reginato, and P.J. Pinter, "Canopy temperature as a crop water stress indicator," Water Resour. Res. Vol. 17, pp. 1133-1138, 1981, doi.org/10.1029/WR017i004p01133
  8. J.H. An, S.H. Jeon, E.Y. Choi, H.M. Kang, J.K. Na, and K.Y. Choi, "Effect of irrigation starting point of soil on chlorophyll fluorescence, stem sap flux relative rate and leaf temperature of cucumber in greenhouse", J. Bio-Environment Control, Vol.30, No.1, pp. 46-55, 2021, doi.org/10.12791/KSBEC.2021.30.1.046
  9. N.C. Turner, E.D. Schulze, and T. Gollan, "The responses of stomata and leaf gas exchange to vapor pressure deficits and soil water content: I. Species comparisons at high soil water contents," Oecol, Vol. 63, pp. 338-342, 1984, doi.org/10.1007/BF00390662
  10. K.B. Wilson and J.A. Bunce, "Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean," Plant Cell Environ., Vol. 20, pp. 230-238, 1997, doi.org/10.1046/j.1365-3040.1997.d01-58.x