DOI QR코드

DOI QR Code

생산기관 직제분석 자동화 및 공통 활용 방안

Automation and Common Utilization Plans of Job and Organization Analysis of Producing Institutions

  • 강윤아 (전북대학교 일반대학원 기록관리학과) ;
  • 박태연 (국가기록원 특수기록지원과) ;
  • 김현진 (국가기록원 서비스정책과) ;
  • 오효정 (전북대학교 문헌정보학과, 문화융복합아카이빙연구소)
  • 투고 : 2021.10.18
  • 심사 : 2021.11.08
  • 발행 : 2021.11.30

초록

직제분석 업무는 다양한 생산기관에 대한 변천 이력과 주요 업무 기능을 파악하는 과업으로, 영구기록물관리기관 내에서 공통적으로 수행되어야 하는 과업이며 다수의 작업자가 관련 지식을 공동으로 참조해야 한다. 그러나 현업에서는 한정된 수의 담당자가 개별적으로 수작업을 통해 수행하고 있으며 그 결과도 공유되지 않고 있다. 이에 본 연구는 직제 분석 프로세스의 자동화를 통해 기록물 담당자의 업무 부담을 경감시키고 영구기록물관리기관에서 공통으로 활용 가능한 기초 자원을 구축하고자 한다. 영구기록물관리기관의 실무 담당자와 FGI를 수행함으로써 직제분석 업무를 세분화하고 자동화 가능한 부분을 선별하였으며, 이를 실현할 수 있는 방안을 함께 제안하였다. 또한 전자기록관리 과정에서 공통으로 참조 가능한 기초분석자료를 도출하고 그 결과를 실무자를 통해 검증함으로써 효율적인 지식자원 활용 방안을 제시하였다. 나아가 규격화된 업무 프로세스 정립을 통해 일관된 체계적인 업무 수행을 지원하는 기반을 마련하였다.

Job and organization analysis of producing institutes is a task that identifies the history of transition and major business functions for various record-producing institutions and must be performed in common within the archives, and many workers must jointly refer to the relevant knowledge. However, in the field, a limited number of people in charge are individually performing by manual work, and the results are not shared. Therefore, this study aims to reduce the work burden of workers through the automation of the job and organization analysis process and build basic resources that can be commonly used by the archives. This study subdivided the task of job and organization analysis into manual, semi-automation, and automation parts by performing FGI with the practitioner of the archive and suggested ways to realize it. In addition, we derive the basic analysis data that can be commonly referenced in the electronic records management process, and by verifying the results through practitioners, efficient use of knowledge resources is suggested. Furthermore, by establishing a standardized work process, we intend to lay the foundation to support consistent and systematic work performance.

키워드

과제정보

본 논문은 '2021년 국가기록관리 활용기술 performance. 연구개발(R&D) 사업'의 연구비를 지원받아 수행되었음. 본 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (과제번호: NRF-2019S1A5B8099507).

참고문헌

  1. An, Dae-jin & Yim, Jin-hee (2017). Application of 4th Industrial Revolution Technology to Records Management. The Korean Journal of Archival Studies, 54, 211-248. http://dx.doi.org/10.20923/kjas.2017.54.211
  2. Jang, Ji-Sook & Rieh, Hae-Young (2009). Design of Automatic Records Classification System Using Contextual Information. Journal of Korean Society of Archives and Records Management, 9(1), 151-173. https://doi.org/10.14404/JKSARM.2009.9.1.151
  3. Jung, Sang Jun, Yun, Bo-Hyun, & Oh, Hyo-Jung (2019). Analysis of Social Issues and Media-specific Characteristics Related to Presidential Records based on Semantic Network, 30(1), 181-207. https://doi.org/10.14699/kbiblia.2019.30.1.181
  4. Kim, Hyeon-jin (2021). Status of promotion of the Archives classification system. Issue Paper, 28, 16-30.
  5. Kim, Ki-Bong (2019). A Study of Convergence Technology in Robotic Process Automation for Task Automation, 9(7), 8-13. https://doi.org/10.22156/CS4SMB.2019.9.7.008
  6. Kim, Seong-Hee & Eom, Jae-Eun (2008). A Study on the Document's Automatic Classification Using Machine Learning. Journal of Korean Society of Archives and Records Management, 39(4), 47-66. https://doi.org/10.1633/JIM.2008.39.4.047
  7. Kim, Tae-Young, Ryu, Pum-Mo, Kim, Hansaem, & Oh, Hyo-Jung (2020). Unified Methodology of Multiple POS Taggers for Large-scale Korean Linguistic GS Set Construction. Journal of KIISE, 47(6), 596-602. http://dx.doi.org/10.5626/JOK.2020.47.6.596
  8. Kim, Yeon-Joo (2013). Current status and assignment of Archival Authority Record. Archive In, 23, 62-67.
  9. Kim, You-seung & Kim, Jang-Hwan (2013). A Study on Job and Organization of the National Assembly Archives. A Journal of Korean Society of Archives and Records Management, 13(1), 81-106. https://doi.org/10.14404/JKSARM.2013.13.1.081
  10. Korea Employment Information Service (2016, March 24). Artificial intelligence(AI), the era of collaboration between robots and humans. Available: https://www.keis.or.kr/user/bbs/main/203/2113/bbsDataView/32701.do?page=1&column=&search=&searchSDate=&searc hEDate=&bbsDataCategory
  11. Korea Environmental Industry & Technology Institute (2019, August 1). Korea Environmental Industry & Technology Institute, RPA to innovate Business. Available: http://www.keiti.re.kr/site/keiti/ex/board/View.do?cbIdx=237&bcIdx=29848
  12. Korean Society of Archives and Records Management (2018). Records and Archives Management: Theory and Practice. Seoul: JoEun Geulteo.
  13. Lee, Byung-Hoon (2020, April 22). Police applied and implemented 57 RPA ideas. Financial News. Available: https://www.fnnews.com/news/202004221021139802
  14. Ministry of the Interior and Saftey [n.p.]. Organizational change by administrative agency. Government oraganization management information system. Available: https://www.org.go.kr/orgnzt/chnge/viewAdmnstMach.do
  15. Moon, Hyun-Joo (2010). The Research on Function Theasaurus Establishment Based on Function Classification Scheme. Master's thesis, Department of Archival Studies, Graduate school of Kyungnam University, South Korea.
  16. Nam, Jeoung Min (2009). A Study on Applying EAC to Archive Creators Authority Records. Master's thesis, Department of Records & Archives Management, Chung-ang University, South Korea.
  17. National Archives of Korea (2020a). Study on Approaches to Improve the Accuracy of OCR(Optical Character Recognition) focusing on Koreran Archival Documents.
  18. National Archives of Korea (2020b). A Study on the Application of Non-public Information Filtering and Masking Technology for Public Reclassification of Electronic Records.
  19. National Archives of Korea (2021). Study on Common Training Dataset Construction for appling AI technology for Records Managements.
  20. National Archives of Korea [n.d.]. Introduction to record.
  21. National Information Society Agency (2020). Guide to Introducing RPA for Digital Innovation in the Public Sector.
  22. Park, Si-Hyun (2020, May 27). Grid One wins RPA expansion project from Korea Technology Finance Corporation. Digital Economy News. Available: https://www.denews.co.kr/news/articleView.html?idxno=13500
  23. Standard Model for Archives: Function and Procedure(v2.2). NAK 9:2021(v2.2).
  24. TTA Information and Communication Terminology Dictionary [n.d.]. crawling. Available: https://terms.tta.or.kr/dictionary/dictionaryView.do?word_seq=179640-1
  25. TTA Information and Communication Terminology Dictionary [n.d.]. Natural Language Processing. Available: https://terms.tta.or.kr/dictionary/dictionaryView.do?word_seq=049996-3
  26. Oh, Hyo-Jung, Won, Donh-Hyun, Kim, Chonghuck, Park, Sung-Hee, & Kim, Yong (2018). Design and implementation of crawling algorithm to collect deep web information for web archiving. Data Technologies and Applications, 52(2), 266-277. https://doi.org/10.1108/DTA-07-2017-0053