In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.
터널과 지하시설물을 비롯한 콘크리트 토목구조물을 안전하게 관리하려면 균열 발생 여부를 정기적인 점검을 통해 알아내야 한다. 터널의 콘크리트 라이닝 표면에 발생한 균열의 위치와 형태를 검사하는 일은 주로 고소작업차를 투입하여 이루어진다. 이러한 작업은 차로를 통제한 채 이루어지므로 교통 체증을 일으키며, 점검 종사자가 위험한 환경에 노출되며, 매번 같은 종사자가 같은 터널의 같은 부위를 조사하기 어려우므로 검사 결과의 일관성이 저해된다. 본 연구는 기존 터널 영상 취득 시스템을 대상으로 딥러닝 기술을 적용해 터널 내 콘크리트 라이닝의 균열을 자동으로 탐지하는 방법을 다음과 같이 제시한다. 구체적으로는 의미론적 분할(semantic segmentation)을 수행하는 딥러닝 모델을 공개 데이터셋으로 학습시키고, 터널 영상 취득 시스템으로 취득한 데이터셋을 딥러닝 모델에 입력했을 때 성능을 알아본다. 첫 번째, 공개 데이터셋을 전부 학습시켰을 경우, 두 번째, 공개 데이터셋 중 기존 터널 영상 취득 시스템 데이터셋과 관련성이 높은 데이터셋만 선택하여 학습시켰을 경우, 마지막으로 관련성이 높은 데이터셋과 균열이 없는 영상(negative example)을 선택하여 학습시켰을 경우에 대하여 성능을 비교하여 효율적인 모델 학습 방안을 모색한다. 그 결과 공개 데이터셋에서 관련성이 높은 영상과 균열이 없는 영상을 골라 학습시켰을 경우의 성능이 가장 좋았다. 향후 딥러닝 알고리즘을 터널 영상 취득 시스템에 적용할 때 효율적인 모델 학습 방안을 수립하는데 기여할 것으로 기대한다.
본 논문은 한국건설기술연구원 주요사업으로 지원을 받아 수행된 연구(인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발)로 이에 감사합니다.
References
Jung, S.Y., Lee, S.K., Park, C.I., Cho, S.Y., Yu, J.H. (2019), "A method for detecting concrete cracks using deep-learning and image processing", Journal of the Architectural Institute of Korea Structure and Construction, Vol. 35, No. 11, pp. 163-170.
Kim, A.R., Kim, D.H., Byun, Y.S., Lee, S.W. (2018), "Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering", Journal of the Korean Geotechnical Society, Vol. 34, No. 12, pp. 145-154.https://doi.org/10.7843/KGS.2018.34.12.145
Kim, B.H., Cho, S.J. (2019), "Image-based concrete crack assessment using mask and region-based convolutional neural network", Structural Control and Health Monitoring, Vol. 26, No. 8, e2381.https://doi.org/10.1002/stc.2381
Lee, Y.I., Kim, B.H., Cho, S.J. (2018), "Image-based spalling detection of concrete structures using deep learning", Journal of the Korea Concrete Institute, Vol. 30, No. 1, pp. 91-99.https://doi.org/10.4334/jkci.2018.30.1.091
Paik, S.H., Choi, D.Y., Kim, Y.K., Jung, S.W., Kim, D.N. (2021), "Implementation of the drones with deep-learning crack detection analysis for inspection of bridge", The Journal of Korean Institute of Information Technology, Vol. 19, No. 3, pp. 45-52.
Tsai, Y.C., Chatterjee, A. (2017), "Comprehensive, quantitative crack detection algorithm performance evaluation system", Journal of Computing in Civil Engineering, Vol. 31, No. 5, 04017047.https://doi.org/10.1061/(asce)cp.1943-5487.0000696
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J. (2017), "Pyramid scene parsing network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, pp. 2881-2890.