A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.
국내에서는 수소경제 활성화 정책을 수립하고 수소사회 실현을 위해 수소 인프라 및 수소차 보급 확대를 계획 하고 있다. 이에 따라 수소차의 보급이 급속도로 이루어질 것으로 예상되며, 동시에 수소차의 사고에 대응하기 위한 대책의 확립이 요구되고 있다. 본 연구에서는 수소차에 의해서 발생되는 수소 제트화염이 터널 내부 벽체에 미치는 영향과 내부 복사열 특성 분석을 위해 실험적 연구를 수행하였다. 실험은 수소차에서 발생되는 조건과 동일하게 하기 위해 분사압력을 700 bar로 설정하고, 분사노즐 직경은 1.8 mm로 설정하였다. 또한, 일반 터널에 적용되고 있는 콘크리트 압축강도 40 MPa의 터널 내화 시험체를 제작하고 제트화염 분사노즐과 시험체간의 이격거리에 따른 영향을 검토하였다. 분사노즐과 터널 내화시험체의 이격거리를 변수로 하여 2 m와 4 m에 대해 결과를 분석하였다. 그 결과로부터 시험체 내부 최대 온도는 1,349.9℃ (이격거리 2 m)가 측정되었고, 제트화염 주위 복사열은 최대 39.16 kW/m2까지 나타났다.
본 논문은 소방청의 ESS수소시설 화재 안전기술 연구개발사업(20011645)의 지원을 받아 작성함.
References
ACI 216 (1998), Guide for determining the fire endurance of concrete elements, pp. 15-18.
Choi, D.J. (2019), "A study on the reduction of thermal radiation due to jet fire at safety valve by different capacities of LNG storage tank", Master of Degree, Dept. of Safety Engineering, Seoul National University of Science and Technology, pp. 27-48.
ISO 22899-1 (2021), Determination of the resistance to jet fires of passive fire protection materials - Part 1: General requirements, pp. 16-35.
Kang, B.W., Lee, T.H. (2017), "An investigation of hazard distance in a series of hydrogen jet fire with the hyram tools", Transactions of the Korean Hydrogen and New Energy Society, Vol. 28, No. 2, pp. 166-173.https://doi.org/10.7316/KHNES.2017.28.2.166
Ministry of Land, Infrastructure and Transport (2021), Guideline of fire resistance on road tunnel, pp. 6-21.
Ryu, J.O., Lee, H.Y. (2021), "A basic study on the hazard of hydrogen feul cell vehicles in road tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 1, pp. 47-60.https://doi.org/10.9711/KTAJ.2021.23.1.047
Sohn, J.H., Hahn, Y.B. (1998), "Radiation damage by the pool fire of LNG storage tank", Journal of the Korean Institute of Gas, Vol. 2, No. 1, pp. 14-22.