DOI QR코드

DOI QR Code

Experimental investigation of deformation behavior of geocell retaining walls

  • Altay, Gokhan (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaoglan Campus) ;
  • Kayadelen, Cafer (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaoglan Campus) ;
  • Canakci, Hanifi (Department of Civil Engineering, Hasan Kalyoncu University) ;
  • Bagriacik, Baki (Department of Civil Engineering, Cukurova University, Balcali Campus Saricam/Adana) ;
  • Ok, Bahadir (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Oguzhanoglu, Muhammed Ahmet (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaoglan Campus)
  • Received : 2021.07.12
  • Accepted : 2021.10.22
  • Published : 2021.12.10

Abstract

Construction of retaining walls with geocell has been gaining in popularity because of its easy and fast installation compared to conventional methods. In this study, model tests were conducted by constructing the geocell retaining wall (GRW) at a constant height (i.e., 90 cm) and using aggregate as an infill material at four different configurations and two different surface angles. In these tests, a circular footing was placed behind the walls at different lateral distances from the wall surface and loaded monotonically. Subsequent to this vertical loading being applied to the footing, horizontal displacements on the GRW surface were measured at three different points. The performance of Type 4 GRW exceeded the other three types of GRW, with the highest lateral displacement occurring in Type 4 GRW at approximately 0.67 % of wall height. In addition, the results of these tests were compared with theoretical approaches widely accepted in the literature. The stress levels reached beneath the footing were found to be compatible with theoretical results.

Keywords

Acknowledgement

We would like to thank GEOPLAS company for their support in the supply of geocells used in the experiments. We express our endless gratitude to them for being with us with all their employees whenever needed during the experimental work for this study.

References

  1. Allen, T.M. and Bathurst, R.J. (2014), "Performance of an 11 m high block-faced geogrid wall designed using the K-stiffness method", Canadian Geotech. J., 51(1), 16-29. https://doi.org/10.1139/cgj-2013-0261.
  2. Altay, G., Kayadelen, C., Taskiran T. and Kaya Y.Z.A. (2019), "A laboratory study on pull-out resistance of geogrid in clay soil", Measurement, 139, 301-307. https://doi.org/10.1016/j.measurement.2019.02.065.
  3. Altay, G., Kayadelen, C., Taskiran, T., Bagriacik, B. and Toprak, O. (2021), "Frictional properties between geocells filled with granular material", Revista de la construccion, 20(2), 332-345. http://dx.doi.org/10.7764/rdlc.20.2.332.
  4. Anubhav and Basudhar, P.K. (2010), "Modeling of soil-woven geotextile interface behavior from direct shear test results", Geotextile Geomembr., 28(4), 403-408. https://doi.org/10.1016/j.geotexmem.2009.12.005.
  5. Chen, R.H. and Chiu, Y.M. (2007), "Model tests of geocell retaining structure", Geotextile Geomembr., 26(1), 56-70. https://doi.org/10.1016/j.geotexmem.2007.03.001.
  6. Chen, R.H., Wu, C.P., Huang, F.C. and Shen, C.W. (2013), "Numerical Analysis of Geocell Reinforced Retaining Structure", Geotextile Geomembr., 39, 51-62. https://doi.org/10.1016/j.geotexmem.2013.07.003.
  7. Cuelho, E., Perkins, S. and Morris, Z. (2014), "Relative operational performance of geosynthetic used as subgrade stabilization", FHWA/MT-14-002/7712-251, State of Montana Department of Transportation, Montana, USA.
  8. Cure, E., Sadoglu, E., Turker, E. and Uzuner, B.A. (2014), "Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope", Geomech. Eng., 6(5), 469-485. http://dx.doi.org/10.12989/gae.2014.6.5.469.
  9. Dal, K., Cansiz, O.F., Ornek, M. and Turedi, Y. (2019), "Prediction of footing settlements with geogrid reinforcement and eccentricity", Geosynth. Int., 26(3), 297-308. https://doi.org/10.1680/jgein.19.00008.
  10. Das, B.M. and Sobhan, K. (2010), Principles of Geotechnical Engineering, (8th edition), Cengage Learning, MI, USA.
  11. Dash, S.K., Rajagopal, K. and Krishnaswamy, N.R. (2007), "Behavior of geocell reinforced sand beds under strip loading", Canadian Geotech. J., 44(7), 905-916. https://doi.org/10.1139/t07-035.
  12. Davarci, B., Ornek, M. and Turedi, Y. (2014), "Model studies of multi-edge footings on geogrid-reinforced sand", European J. Environ. Civil Eng., 18(2), 190-205. https://doi.org/10.1080/19648189.2013.854726.
  13. Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417.
  14. Dong, Y.L., Han, J. and Bai, X.H. (2011), "Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures", Geotextile Geomembr., 29(2), 83-91. https://doi.org/10.1016/j.geotexmem.2010.10.007.
  15. Ferreira, F.B., Vieira, C.S. and Lopes, M.L. (2015), "Direct shear behavior of residual soil-geosynthetic interfaces - influence of soil moisture content, soil density and geosynthetic type", Geosynth. Int., 22(3), 257-272. https://doi.org/10.1680/gein.15.00011.
  16. Gomez, D., Caicedo, B. and Estrada, N. (2014), "Centrifuge modelling tests of geocell gravity retaining structures". 8th International Conference on Physical Modeling in Geotechnics (ICPMG), Perth, January.
  17. Gongora, I.A.M.G. and Palmeira, E.M. (2016), "Assessing the influence of some soil-reinforcement interaction parameters on the performance of a low fill on compressible subgrade. Part II: influence of surface maintenance", J. Geosynth. Ground Eng., 2(1), 18-29. https://doi.org/10.1007/s40891-015-0042-2.
  18. Gu, M., Collin, J.G., Han, J., Zhang, Z., Tanyu, B.F., Leshchinsky, D., Ling, H.I. and Rimoldi, P. (2017), "Numerical analysis of instrumented mechanically stabilized gabion walls with large vertical reinforcement spacing", Geotextile Geomembr., 45(4), 294-306. https://doi.org/10.1016/j.geotexmem.2017.04.002.
  19. Guo, J., Han, J., Schrock, S.D. and Parsons, R.L. (2015), "Field evaluation of vegetation growth in geocell-reinforced unpaved shoulders", Geotextile Geomembr., 43(5), 403-411. https://doi.org/10.1016/j.geotexmem.2015.04.013.
  20. Han, J. and Leshchinsky, D. (2010), "Analysis of back-to-back mechanically stabilized earth walls", Geotextile Geomembr., 28(3), 262-267. https://doi.org/10.1016/j.geotexmem.2009.09.012.
  21. Hegde, A.M. and Sitharam, T.G. (2015), "Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets", Canadian Geotech. J., 52(9), 1396-1407. https://doi.org/10.1139/cgj-2014-0387.
  22. Huang, J. and Han, J. (2009), "3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment", Geotextile Geomembr., 27(4), 272-280. https://doi.org/10.1016/j.geotexmem.2009.01.001.
  23. Hussein, M.G. and Meguid, M.A. (2020), "Improved understanding of geogrid response to pullout loading: insights from three-dimensional finite-element analysis", Canadian Geotech. J., 57(2), 277-293. https://doi.org/10.1139/cgj-2018-0384.
  24. Kahyaoglu, M.R. and Sahin, M. (2021), "Model studies on polymer strip reinforced soil retaining walls", Geomech. Eng., 25(5), 357. http://dx.doi.org/10.12989/gae.2021.25.5.357.
  25. Kayadelen, C., Onal, T.O. and Altay, G. (2018), "Experimental study on pull-out response of geogrid embedded in sand", Measurement, 117, 390-396. https://doi.org/10.1016/j.measurement.2017.12.024.
  26. Khorsandiardebili, N. and Ghazavi, M. (2021), "Static stability analysis of geocell-reinforced slopes", Geotextile Geomembr., 49(3), 852-863. https://doi.org/10.1016/j.geotexmem.2020.12.012.
  27. Khoury, C.N., Miller, G.A. and Hatami, K. (2011), "Unsaturated soil-geotextile interface behavior", Geotextile Geomembr., 29(1), 17-28. https://doi.org/10.1016/j.geotexmem.2010.06.009.
  28. Kumar, A., Singh, A.P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance trafficability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
  29. Leshchinsky, B. and Ling, H. (2013), "Effects of Geocell confinement on strength and deformation behavior of gravel", J. Geotech. Geoenviron. Eng., 139(2), 340-352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757.
  30. Liu, S.Y., Han, J., Zhang, D.W. and Hong, Z.S. (2008), "A combined DJM-PVD method for soft ground improvement", Geosynth. Int., 15(1), 43-54. https://doi.org/10.1680/gein.2008.15.1.43.
  31. Mehrjardi, G.T., Behrad R. and Moghaddas Tafreshi, S.N. (2019), "Scale effect on the behavior of geocell-reinforced soil", Geotextile Geomembr., 47(2), 154-163. https://doi.org/10.1016/j.geotexmem.2018.12.003.
  32. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Canadian Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  33. Mirzaalimohammadi, A., Ghazavi, M., Roustaei, M. and Lajevardi, S.H. (2019), "Pullout response of strengthened geosynthetic interacting with fine sand", Geotextile Geomembr., 47(4), 530-541. https://doi.org/10.1016/j.geotexmem.2019.02.006.
  34. Moghaddas Tafreshi, S.N. and Dawson, A.R. (2010), "Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement", Geotextile Geomembr., 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003.
  35. Moradi, G., Abdolmaleki, A. and Soltani, P. (2019), "Small-and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., 18(3), 315-328. https://doi.org/10.12989/gae.2019.18.3.315.
  36. Namjoo, A. M., Jafari, K. and Toufigh, V. (2020), "Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior", Transport. Geotech., 24, 100403. https://doi.org/10.1016/j.trgeo.2020.100403.
  37. Pinto, M., Isabel, M. and Cousens, T.W. (1996), "Geotextile reinforced brick facing retaining walls", Geotextile Geomembr., 14(9), 449-464. https://doi.org/10.1016/S0266-1144(96)00037-4.
  38. Satyal, S.R., Leshchinsky, B., Han, J. and Neupane, M. (2018). "Use of cellular confinement for improved railway performance on soft subgrades", Geotextile Geomembr., 46(2), 190-205. https://doi.org/10.1016/j.geotexmem.2017.11.006.
  39. Shamsi, M., Ghanbari, A. and Nazariafshar, J. (2019), "Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers", Geomech. Eng., 19(4), 329-342. https://doi.org/10.12989/gae.2019.19.4.329.
  40. Shen, C.W. (2005), "The mechanical characteristics of geocell-reinforced earth", M.Sc. Dissertation, National Taiwan University, China.
  41. Song, F. and Tian, Y. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1), 1-9. https://doi.org/10.12989/gae.2019.17.1.001.
  42. Song, F., Jin, Y., Liu, H. and Liu, J. (2020), "Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition", Geotextile Geomembr., 48(6), 886-896. https://doi.org/10.1016/j.geotexmem.2020.06.007.
  43. Song, F., Liu, H., Chai, H. and Chen, J. (2017), "Stability analysis of geocell-reinforced retaining walls", Geosynth. Int., 24(5), 442-450. https://doi.org/10.1680/jgein.17.00013.
  44. Song, F., Liu, H., Hu, H. and Xie, Y. (2018a), "Centrifuge tests of geocell-reinforced retaining walls at limit equilibrium", J. Geotech. Geoenviron. Eng., 144(3), 04018005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001849.
  45. Song, F., Liu, H., Ma, L. and Hu, H. (2018b), "Numerical analysis of geocell-reinforced retaining wall failure modes", Geotextile Geomembr., 46(3), 284-296. https://doi.org/10.1016/j.geotexmem.2018.01.004.
  46. Song, F., Liu, H., Yang, B. and Zhao, J. (2019), "Large-scale triaxial compression tests of geocell-reinforced sand", Geosynth. Int., 26(4), 388-395. https://doi.org/10.1680/jgein.19.00019.
  47. Song, F., Xie, Y.L., Yang, Y.F. and Yang, X.H. (2014), "Analysis of failure of flexible Geocell reinforced retaining walls", Geosynth. Int., 21(6), 342-351. https://doi.org/10.1680/gein.14.00022.
  48. Soylemez, M. and Arslan, S. (2020). "Experimental investigation of influence of clay in soil on interface friction between geotextile and clayey soil", Arabian J. Geosci., 13(10), 1-8. https://doi.org/10.1007/s12517-020-05339-1.
  49. Tafreshi M., Shaghaghi T., Gh Mehrjardi T., Dawson A.R. and Ghadrdan, M. (2015), "A Simplified Method for Predicting the Settlement of Circular Footings on Multi-Layered geocell-reinforced non-cohesive soils", Geotextile Geomembr., 43(4), 332-344. https://doi.org/10.1016/j.geotexmem.2015.04.006.
  50. Mehrjardi, G.T., Tafreshi, S.M. and Dawson, A.R. (2012), "Combined use of Geocell reinforcement and rubber-soil mixtures to improve performance of buried pipes", Geotextile Geomembr., 34, 116-130. https://doi.org/10.1016/j.geotexmem.2012.05.004.
  51. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley Publishing, New York, USA.
  52. Thakur, J., Han, J. and Parsons, R. (2017), "Factors influencing deformations of geocell reinforced recycled asphalt pavement bases under cyclic loading", J. Mater. Civil Eng., 29(3), 1-12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760.
  53. Thakur, J.K., Han, J., Pokharel, S.K. and Parsons, R.L. (2012), "Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading", Geotextile Geomembr., 35, 14-24. https://doi.org/10.1016/j.geotexmem.2012.06.004.
  54. Vieira, C.S., Lopes, M.L. and Caldeira, L.M. (2013), "Sand-geotextile interface characterization through monotonic and cyclic direct shear tests", Geosynth. Int., 20(1), 26-38. https://doi.org/10.1680/gein.12.00037.
  55. Xiao, C., Han, J. and Zhang, Z. (2015), "Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing load", Geotextile Geomembr., 44(1), 81-94. https://doi.org/10.1016/j.geotexmem.2015.06.001.
  56. Zhang, J., Li, X., Ding, L. and Xiao, Y. (2021), "Reinforcement effect investigation of geogrids in the junction between new and existing subgrades in highway widening", J. Testing Evaluation, 50(5). https://doi.org/10.1520/JTE20210223.
  57. Zhou, H.B. and Wen, X.J. (2008), "Model studies on geogrid- or geocell-reinforced sand mattress on soft soil", Geotextile Geomembr., 26(3), 231-238. https://doi.org/10.1016/j.geotexmem.2007.10.002.