DOI QR코드

DOI QR Code

Structural health monitoring of CFRPs using electrical resistance by reduced peripheral electrodes

  • Park, Young-Bin (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Roh, Hyung Doh (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, In Yong (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2021.02.26
  • Accepted : 2021.08.06
  • Published : 2021.12.25

Abstract

In this study, structural health monitoring (SHM) methods of carbon fiber reinforced plastics (CFRPs) were investigated using electrical resistance. The developed sensing technique monitored electrical resistance in accordance with the impact damage of a CFRP. The changes in electrical resistances with multiple electrode sets enabled SHM without extra sensors so that this technique can be called self-sensing. Moreover, this study proposed electrodes only at peripheral side of a structure to minimize the number of electrodes compared to those in an array which has square number of sensors as the sensing area increases. For the intensive investigation, electromechanical sensitivity in terms of electrode distance was analyzed and optimized under drop weight impact testing. Then, SHM methods with electrodes in an array and electrodes in peripheral edges were comparatively investigated. The developed methods successfully localized impact damages into 2D coordinates. Furthermore, damage severity can be shown with a damage map by calculating electrical resistance change ratio. Therefore, structural health self-sensing system using electrical resistance was successfully developed with the minimum number of electrodes.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT, Korea (NRF-2017R1A5A1015311).

References

  1. Andreades, C., Fierro, G.P.M. and Meo, M. (2020), "A nonlinear ultrasonic SHM method for impact damage localisation in composite panels using a sparse array of piezoelectric PZT transducers", Ultrasonics, 108, 106181. https://doi.org/10.1016/j.ultras.2020.106181
  2. Carboni, M., Gianneo, A. and Giglio, M. (2015), "A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites", Ultrasonics, 60, 51-64. https://doi.org/10.1016/j.ultras.2015.02.011
  3. Casciati, S, Chen, Z.C., Faravelli, L. and Vece, M. (2016), "Synergy of monitoring and security", Smart Struct. Syst., Int. J., 17(5), 743-751. https://doi.org/10.12989/sss.2016.17.5.743
  4. Cho, S., Jo, H., Jang, S., Park, J., Yun, C.-B. and Seo, J.-W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., Int. J., 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
  5. Chung, D.D.L. (2016), Advanced Composite Materials for Aerospace Engineering, edited by S. Rana and R. Fangueiro, Woodhead Publishing, pp. 295-331.
  6. Cocchi, D., Raimondi, L., Brugo, T.M. and Zucchelli, A. (2020), "A systematic material-oriented design approach for lightweight components and the CFRP motor wheel case study", Int. J. Adv. Manuf. Technol., 109(7), 2133-2153. https://doi.org/10.1007/s00170-020-05756-2
  7. Gallo, G.J. and Thostenson, E.T. (2015), "Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks", Mater. Today Commun., 3, 17-26. https://doi.org/10.1016/j.mtcomm.2015.01.009
  8. Geng, X., Jiang, M., Gao, L., Wang, Q., Jia, Y., Sui, Q., Jia, L. and Li, D. (2017), "Sensing characteristics of FBG sensor embedded in CFRP laminate", Measurement, 98, 199-204. https://doi.org/10.1016/j.measurement.2016.12.003
  9. Ghodrati, A.G., Seyed, R.S.A. and Bagheri, A. (2011), "Damage detection in plates based on pattern search and Genetic algorithms", Smart Struct. Syst., Int. J., 7(2), 117-132. http://doi.org/10.12989/sss.2011.7.2.117
  10. Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences", Progress Aerosp. Sci., 70, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002
  11. Hauffe, A., Hahnel, F. and Wolf, K. (2020), "Comparison of algorithms to quantify the damaged area in CFRP ultrasonic scans", Compos. Struct., 235, 111791. https://doi.org/10.1016/j.compstruct.2019.111791
  12. He, Y., Tian, G., Pan, M. and Chen, D. (2014a), "Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography", Compos. Struct., 109, 1-7. https://doi.org/10.1016/j.compstruct.2013.10.049
  13. He, Y., Tian, G., Pan, M. and Chen, D. (2014b), "Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current", Compos. Part B: Eng., 59, 196-203. https://doi.org/10.1016/j.compositesb.2013.12.005
  14. Ju, M., Park, K., Moon, D. and Park, C. (2018), and Sim, J., "On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor", Smart Struct. Syst., Int. J., 65(2), 155-162. http://doi.org/10.12989/sem.2018.65.2.155
  15. Kalashnyk, N., Faulques, E., Schjodt-Thomsen, J., Jensen, L.R., Rauhe, J.C.M. and Pyrz, R. (2017), "Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity", Synthetic Metals, 224, 56-62. https://doi.org/10.1016/j.synthmet.2016.12.021
  16. Karayannis, C.G., Voutetaki, M.E., Chalioris, C.E., Providakis, C.P. and Angeli, G.M. (2015), "Detection of flexural damage stages for RC beams using piezoelectric sensors (PZT)", Smart Struct. Syst., Int. J., 15(4), 997-1018. http://doi.org/10.12989/sss.2015.15.4.997
  17. Kim, J.-W., Lee, C. and Park, S. (2012), "Damage Localization for CFRP-Debonding Defects Using Piezoelectric SHM Techniques", Res. Nondestruct. Eval., 23(4), 183-196. http://dx.doi.org/10.1080/09349847.2012.660244
  18. Kwon, D.-J., Shin, P.-S., Kim, J.-H., Wang, Z.-J., DeVries, K.L. and Park, J.-M. (2016), "Detection of damage in cylindrical parts of carbon fiber/epoxy composites using electrical resistance (ER) measurements", Compos. Part B: Eng., 99, 528-532. https://doi.org/10.1016/j.compositesb.2016.06.050
  19. Liang, T., Ren, W., Tian, G.Y., Elradi, M. and Gao, Y. (2016), "Low energy impact damage detection in CFRP using eddy current pulsed thermography", Compos. Struct., 143, 352-361. https://doi.org/10.1016/j.compstruct.2016.02.039
  20. Lu, S., Jiang, M., Sui, Q., Sai, Y. and Jia, L. (2015), "Low velocity impact localization system of CFRP using fiber Bragg grating sensors", Optical Fiber Technol., 21, 13-19. https://doi.org/10.1016/j.yofte.2014.07.003
  21. Mizukami, K., Mizutani, Y., Kimura, K., Sato, A., Todoroki, A. and Suzuki, Y. (2016), "Detection of in-plane fiber waviness in cross-ply CFRP laminates using layer selectable eddy current method", Compos. Part A: Appl. Sci. Manuf., 82, 108-118. https://doi.org/10.1016/j.compositesa.2015.11.040
  22. Naghashpour, A. and Van Hoa, S. (2013), "A technique for real-time detection, location and quantification of damage in large polymer composite structures made of electrically nonconductive fibers and carbon nanotube networks", Nanotechnology, 24(45), 455502. https://doi.org/10.1088/0957-4484/24/45/455502
  23. Naghashpour, A. and Van Hoa, S. (2014), "A technique for real-time detecting, locating, and quantifying damage in large polymer composite structures made of carbon fibers and carbon nanotube networks", Struct. Health Monitor., 14(1), 35-45. https://10.1177/1475921714546063
  24. Naghashpour, A. and Van Hoa, S. (2017), "Requirements of amount of carbon nanotubes for damage detection in large polymer composite structures", Polym. Testing, 63, 407-416. https://doi.org/10.1016/j.polymertesting.2017.08.013
  25. Post, W., Kersemans, M., Solodov, I., Van Den Abeele, K., Garcia, S.J. and van der Zwaag, S. (2017), "Non-destructive monitoring of delamination healing of a CFRP composite with a thermoplastic ionomer interlayer", Compos. Part A: Appl. Sci. Manuf., 101, 243-253. https://doi.org/10.1016/j.compositesa.2017.06.018
  26. Ramirez, M. and Chung, D.D.L. (2016), "Electromechanical, self-sensing and viscoelastic behavior of carbon fiber tows", Carbon, 110, 8-16. https://doi.org/10.1016/j.carbon.2016.08.095
  27. Suvarna, R., Arumugam, V., Bull, D.J., Chambers, A.R. and Santulli, C. (2014), "Effect of temperature on low velocity impact damage and post-impact flexural strength of CFRP assessed using ultrasonic C-scan and micro-focus computed tomography", Compos. Part B: Eng., 66, 58-64. https://doi.org/10.1016/j.compositesb.2014.04.028
  28. Todoroki, A. (2014), "Monitoring of electric conductance and delamination of CFRP using multiple electric potential measurements", Adv. Compos. Mater., 23(2), 179-193. http://doi.org/10.1080/09243046.2013.844900
  29. Todoroki, A., Samejima, Y., Hirano, Y. and Matsuzaki, R. (2009), "Piezoresistivity of unidirectional carbon/epoxy composites for multiaxial loading", Compos. Sci. Technol., 69(11), 1841-1846. https://doi.org/10.1016/j.compscitech.2009.03.023
  30. Todoroki, A., Haruyama, D., Mizutani, Y., Suzuki, Y. and Yasuoka, T. (2014), "Electrical resistance change of carbon/epoxy composite laminates under cyclic loading under damage initiation limit", Open J. Compos. Mater., 4(1). http://doi.org/10.10.4236/ojcm.2014.41003
  31. Todoroki, A., Yamada, K., Mizutani, Y., Suzuki, Y. and Matsuzaki, R. (2015), "Impact damage detection of a carbon-fibre-reinforced-polymer plate employing self-sensing time-domain reflectometry", Compos. Struct., 130, 174-179. https://doi.org/10.1016/j.compstruct.2015.04.020
  32. Vaidya, S. and Allouche, E.N. (2011), "Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer", Smart Struct. Syst., Int. J., 7(1), 27-40. http://doi.org/10.12989/sss.2011.7.1.027
  33. Vertuccio, L., Spinelli, G., Lamberti, P., Tucci, V., Zarrelli, M., Russo, S., Iannuzzo, G. and Guadagno, L. (2020), "Self-sensing nanocomposites in automotive/aeronautic field", Mater. Today: Proceedings, 34, 125-127. https://doi.org/10.1016/j.matpr.2020.01.409
  34. Wang, S. and Chung, D.D.L. (2006), "Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement", Carbon, 44(13), 2739-2751. https://doi.org/10.1016/j.carbon.2006.03.034
  35. Wang, D. and Chung, D.D.L. (2013), "Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing", Carbon, 60, 129-138. https://doi.org/10.1016/j.carbon.2013.04.005
  36. Wang, Z., Qiao, P. and Shi, B. (2018), "Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries", Smart Struct. Syst., Int. J., 21(2), 195-205. https://doi.org/10.12989/sss.2018.21.2.195
  37. Xi, X. and Chung, D.D.L. (2019), "Piezoelectric and piezoresistive behavior of unmodified carbon fiber", Carbon, 145, 452-461. https://doi.org/10.1016/j.carbon.2019.01.044
  38. Yamane, T. and Todoroki, A. (2016), "Electric potential function of oblique current in laminated carbon fiber reinforced polymer composite beam", Compos. Struct., 148, 74-84. https://doi.org/10.1016/j.compstruct.2016.03.047
  39. Yu, Y., Ou, J. and Li, H. (2010), "Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 6(5-6), 641-659. https://doi.org/10.12989/sss.2010.6.5_6.641
  40. Zhong, Y. and Xiang, J. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., Int. J., 24(2), 173-182. https://doi.org/10.12989/sss.2019.24.2.173