DOI QR코드

DOI QR Code

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.03.18
  • Accepted : 2021.09.27
  • Published : 2021.12.25

Abstract

Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number RGP.1/154/42.

References

  1. Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M. and Waqas, M. (2020), "Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy", Comput. Methods Programs Biomed., 190, 105362. https://doi.org/10.1016/j.cmpb.2020.105362
  2. Ahmed, Z., Nadeem, S., Saleem, S. and Ellahi, R. (2019), "Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface", Int. J. Numer. Methods Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2019-0346
  3. Al-Hossainy, A.F., Eid, M.R. and Zoromba, M.S. (2019), "SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium", Physica Scripta, 94(10), 105208. https://doi.org/10.1088/1402-4896/ab2413
  4. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111
  5. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
  6. Bestman, A.V. (1990), "Natural convection boundary layer with suction and mass transfer in a porous medium", Int. J. Energy Res., 14(4), 389-396. https://doi.org/10.1002/er.4440140403
  7. Bhatti, M.M. and Michaelides, E.E. (2020), "Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate", J. Thermal Anal. Calorimetry, 1-10. https://doi.org/10.1007/s10973-020-09492-3
  8. Bhatti, M.M., Mishra, S.R., Abbas, T. and Rashidi, M.M. (2018), "A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects", Neural Comput. Applicat., 30(4), 1237-1249. https://doi.org/10.1007/s00521-016-2768-8
  9. Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transfer, 128(3), 240-250. https://doi.org/10.1115/1.2150834
  10. Casson, N.A. (1959), "Flow equation for pigment oil suspensions of the printing ink type", In: Rheology of Dispersed System, Peragamon Press. https://doi.org/10.1002/9781444391060
  11. Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", (No. ANL/MSD/CP84938; CONF-951135-29), Argonne National Lab., IL, USA.
  12. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216
  13. Daniel, Y.S., Aziz, Z.A., Ismail, Z. and Salah, F. (2017), "Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification", Chinese J. Phys., 55(3), 630-651. https://doi.org/10.1016/j.cjph.2017.04.001
  14. Eldabe, N.T.M. and Salwa, M.G.E. (1995), "Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders", J. Phys., 64, 41-64. https://doi.org/10.1016/j.jphys.2017.11.011
  15. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J. (2001), "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles", Appl. Phys. Lett., 78(6), 718-720. https://doi.org/10.1063/1.1341218
  16. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M., & Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037
  17. Gbadeyan, J.A., Titiloye, E.O. and Adeosun, A.T. (2020), "Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip", Heliyon, 6(1), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076
  18. Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D. and Jafari, B. (2018), "Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet", Case Studies Thermal Eng., 12, 176-187. https://doi.org/10.1016/j.csite.2018.04.009
  19. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., Int. J., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253
  20. Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., Int. J., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481
  21. Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G. (2014), "Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet", Central Eur. J. Phys., 12(12), 862-871. https://doi.org/10.2478/s11534-014-0522-3
  22. Hayat, T., Kanwal, M., Qayyum, S. and Alsaedi, A. (2020), "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation", Physica A: Statist. Mech. Applicat., 544, 123437. https://doi.org/10.1016/j.physa.2019.123437
  23. Hillesdon, A.J. and Pedley, T.J. (1996), "Bioconvection in suspensions of oxytactic bacteria: linear theory", J. Fluid Mech., 324, 223-259. https://doi.org/10.1017/S0022112096007902
  24. Hillesdon, A.J., Pedley, T.J. and Kessler, J.O. (1995), "The development of concentration gradients in a suspension of chemotactic bacteria", Bull. Math. Biol., 57, 299-344. https://doi.org/10.1007/BF02460620
  25. Ibrahim, W. and Negera, M. (2020), "MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction", J. Egypt. Mathe. Soc., 28(1), 1-28. https://doi.org/10.1186/s42787-019-0057-2
  26. Irfan, M., Khan, W.A., Khan, M. and Gulzar, M.M. (2019), "Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection", J. Phys. Chem. Solids, 125, 141-152. https://doi.org/10.1016/j.jpcs.2018.10.016
  27. Jawad, M., Shah, Z., Islam, S., Bonyah, E. and Khan, A.Z. (2018), "Darcy-Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier's partial slip", J. Phys. Commun., 2(11), 115014. https://doi.org/10.1088/2399-6528/aaeddf
  28. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
  29. Khan, M.I., Hayat, T., Waqas, M., Alsaedi, A. and Khan, M.I. (2019a), "Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions", J. Hydrodyn., 31(2), 421-427. https://doi.org/10.1007/s42241-019-0003-7
  30. Khan, W.A., Rashad, A.M., Abdou, M.M.M. and Tlili, I. (2019b), "Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone", Eur. J. Mech. - B/Fluids, 75, 133-142. https://doi.org/10.1016/j.euromechflu.2019.01.002
  31. Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Scientific Reports, 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2
  32. Kumam, P., Shah, Z., Dawar, A., Rasheed, H.U. and Islam, S. (2019), "Entropy generation in MHD radiative flow of CNTs Casson nanofluid in rotating channels with heat source/sink", Mathe. Problems Eng. https://doi.org/10.1155/2019/9158093
  33. Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass Transfer, 37, 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015
  34. Kuznetsov, A.V. (2011a), "Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth", Eur. J. Mech. - B/Fluids, 30, 156-165. https://doi.org/10.1016/j.euromechflu.2010.10.007
  35. Kuznetsov, A.V. (2011b), "Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability", Nanoscale Res. Lett., 6, 100. https://doi.org/10.1186/1556-276X-6-100
  36. Le Thanh, C., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0
  37. Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A. (1999), "Measuring thermal conductivity of fluids containing oxide nanoparticles", J. Heat Tranfer, 121(2), 280e289. https://doi.org/10.1115/1.2825978
  38. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525
  39. Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Transfer, 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072
  40. Maleque, K. (2013), "Effects of binary chemical reaction and activation energy on MHD boundary layer heat and mass transfer flow with viscous dissipation and heat generation/absorption", ISRN Thermodyn. https://doi.org/10.1155/2013/284637
  41. Mishra, A. and Kumar, M. (2020), "Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating", SN Appl. Sci., 2(8), 1-13. https://doi.org/10.1007/s42452-020-3156-7
  42. Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2017), "Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy", Int. J. Heat Mass Transfer, 108, 1340-1346. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.029
  43. Nayak, M.K., Prakash, J., Tripathi, D., Pandey, V.S., Shaw, S. and Makinde, O.D. (2020), "3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms", Heat Transfer-Asian Res., 49(1), 135-153. https://doi.org/10.1002/htj.21603
  44. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027
  45. Ramzan, M., Bilal, M., Chung, J.D. and Farooq, U. (2016), "Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface-An optimal solution", Results Phys., 6, 1072-1079. https://doi.org/10.1016/j.rinp.2016.11.036
  46. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
  47. Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533
  48. Sheikholeslami, M., Abelman, S. and Ganji, D.D. (2014), "Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation", Int. J. Heat Mass Transfer, 79, 212-222. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.004
  49. Souayeh, B., Reddy, M.G., Sreenivasulu, P., Poornima, T., Rahimi-Gorji, M. and Alarifi, I.M. (2019), "Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle", J. Molecular Liquids, 284, 163-174. https://doi.org/10.1016/j.molliq.2019.03.151
  50. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
  51. Tlili, I., Ramzan, M., Kadry, S., Kim, H.W. and Nam, Y. (2020), "Radiative mhd nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and hall current", Entropy, 22(3), 354. https://doi.org/10.3390/e22030354
  52. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
  53. Wang, C.Y. (1889), "Free convection on a vertical stretching surface", J. Appl. Math. Mech. (ZAMM), 69, 418-420. https://doi.org/10.1002/zamm.19890691115
  54. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
  55. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391
  56. Zuhra, S., Khan, N.S., Shah, Z., Islam, S. and Bonyah, E. (2018), "Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms", AIP Adv., 8(10), 105210. https://doi.org/10.1063/1.5054679