Acknowledgement
The authors would like to thank the anonymous reviewers for the comments and suggestions that helped to improve the manuscript.
References
- ACI 318 (1989), Building Code Requirements for Reinforced Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- ACI 318 (2002), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- ASCE (2002), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-02, Reston, VA.
- Cao, R., Sun, Z., Wang, J. and Guo, F. (2021), "An efficient reliability analysis strategy for low failure probability problems", Struct. Eng. Mech., 78(2), 209-218. https://doi.org/10.12989/sem.2021.78.2.209.
- Celarec, D. and Dolsek, M. (2013), "The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings", Eng. Struct., 52(3), 340-354. https://doi.org/10.1016/j.engstruct.2013.02.036.
- Choi, B.S., Scanlon, A. and Johnson, P.A. (2004), "Monte-Carlo simulation of immediate and time-dependent deflections of reinforced concrete beams and slabs", Struct. J., 101(5), 633-641.
- Deodatis, G. (1991), "Weighted integral method. I: stochastic stiffness matrix", J. Eng. Mech., 117(8), 1851-1864. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:8(1851).
- Deodatis, G. and Shinozuka, M. (1991), "Weighted integral method. II: Response variability and reliability", J. Eng. Mech., 117(8), 1865-1877. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:8(1865).
- Diniz, S.M. and Frangopol, D.M. (2003), "Safety evaluation of slender high-strength concrete columns under sustained loads", Comput. Struct., 81(14), 1475-1486. https://doi.org/10.1016/S0045-7949(03)00085-3.
- Duprat, F. (2007), "Reliability of RC beams under chloride-ingress", Constr. Build. Mater., 21(8), 1605-1616. https://doi.org/10.1016/j.conbuildmat.2006.08.002.
- Ellingwood, B.R., Galambos, T.V., McGregor, J.G. and Cornell, C.A. (1980), "Development of a probability based load criterion for american national standard A58", NBS Special Report 577, U.S. Department of Commerce, National Bureau of Standards, USA.
- Farvashany, F.E., Foster, S.J. and Rangan, B.V. (2008), "Strength and deformation of high-strength concrete shearwalls", ACI Struct. J., 105(1), 21-29.
- FEMA 350 (2000), Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, DC.
- FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, DC.
- Feng, D. and Li, J. (2015), "Stochastic nonlinear behavior of reinforced concrete frames. II: Numerical simulation", J. Struct. Eng., 142(3), D4015163. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001443.
- fib (2012), fib Bulletins No. 65 & 66, Model Code 2010, Lausanne, Switzerland.
- Floris, C. and Mazzucchelli, A. (1991), "Reliability assessment of RC column under stochastic stress", J. Struct. Eng., 117(11), 3274-3292. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3274).
- Garakaninezhad, A. and Bastami, M. (2019), "An evolutionary approach for structural reliability", Struct. Eng. Mech., 71(4), 329-339. https://doi.org/10.12989/sem.2019.71.4.329.
- Gaxiola-Camacho, J.R., Azizsoltani, H., Villegas-Mercado, F.J. and Haldar, A. (2017), "A novel reliability technique for implementation of performance-based seismic design of structures", Eng. Struct., 142, 137-147. https://doi.org/10.1016/j.engstruct.2017.03.076.
- Ghanem, R. and Spanos, P.D. (2003), Stochastic Finite Elements: A Spectral Approach, Dover Publications, New York, NY, USA.
- Gonen, S. and Soyoz, S. (2021), "Reliability-based seismic performance of masonry arch bridges", Struct. Infrastr. Eng., 1-16. https://doi.org/10.1080/15732479.2021.1918726.
- Huang, Y., Hu, H. and Xiong, M. (2019), "Performance-based seismic fragility analysis of retaining walls based on the probability density evolution method", Struct. Infrastr. Eng., 15(1), 103-112. https://doi.org/10.1080/15732479.2018.1520906.
- Huh, J., Lee, S.Y. and Haldar, A. (2003), "Reliability evaluation using finite element method", Proceedings of the 4th International Symposium on Uncertainty Modeling and Analysis (ISUMA'03), Maryland, USA, September.
- Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Div., 97(7), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957.
- Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation, John Wiley & Sons, New York, NY, USA.
- Li, J., Feng, D., Gao, X. and Zhang, Y. (2015), "Stochastic nonlinear behavior of reinforced concrete frames", I: Experimental investigation", J. Struct. Eng., 142(3), D4015162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001442.
- Lu, R., Luo, Y. and Conte, J.P. (1994), "Reliability evaluation of reinforced concrete beams", Struct. Saf., 14(4), 277-298. https://doi.org/10.1016/0167-4730(94)90016-7.
- Maekawa, K., Okamura, H. and Pimanmas, A. (2003), Non-Linear Mechanics of Reinforced Concrete, CRC Press, Boca Raton, Florida, USA.
- Matos, J.C., Valente I. and Cruz, P.J. (2010), "Uncertainty evaluation of reinforced concrete structures behavior", Proceedings of the 5th International IABMAS Conference, Philadelphia, USA, July.
- Matthies, H.G., Brenner, C.E., Bucher, C.G. and Soares, C.G. (1997), "Uncertainties in probabilistic numerical analysis of structures and solids-stochastic finite elements", Struct. Saf., 19(3), 283-336. https://doi.org/10.1016/S0167-4730(97)00013-1.
- Naess, A. and Bo, H.S. (2018), "Reliability of technical systems estimated by enhanced Monte Carlo simulation", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civil Eng., D4017030.
- Naess, A., Leira, B.J. and Batsevych, O. (2012), "Reliability analysis of large structural systems", Probab. Eng. Mech., 28(3), 164-168. https://doi.org/10.1016/j.probengmech.2011.08.024.
- Noh, H.Y. and Kiremidjian, A.S. (2011), "Damage diagnosis algorithms using statistical pattern recognition for civil structures subjected to earthquakes", Ph.D. Dissertation, Stanford University, Stanford, USA.
- Noh, H.Y., Lallemant, D. and Kiremidjian, A.S. (2015), "Development of empirical and analytical fragility functions using kernel smoothing methods", Earthq. Eng. Struct. Dyn., 44(8), 1163-1180. https://doi.org/10.1002/eqe.2505.
- Nowak, A.S. and Collins, K.R. (2012), Reliability of Structures, 2nd Edition, CRC Press, Boca Raton, Florida, USA.
- Nowak, A.S., Szerszen, M.M., Szeliga, E.K., Szwed, A. and Podhorecki, P.J. (2005), "Reliability-based calibration for structural concrete", Univ. Nebraska, UNLCE, 05-03.
- Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. https://doi.org/10.12989/sem.2020.76.2.223.
- Pang, R., Xu, B., Kong, X., Zou, D. and Zhou, Y. (2018), "Seismic reliability assessment of earth-rockfill dam slopes considering strain-softening of rockfill based on generalized probability density evolution method", Soil Dyn. Earthq. Eng., 107, 96-107. https://doi.org/10.1016/j.soildyn.2018.01.020.
- Parisi, F. and Augenti, N. (2017), "Structural failure investigations through probabilistic nonlinear finite element analysis: methodology and application", Eng. Fail. Anal., 80, 386-402. https://doi.org/10.1016/j.engfailanal.2017.07.004.
- Sakka, Z.I., Assakkaf, I.A. and Qazweeni, J.S. (2018), "Reliability-based assessment of damaged concrete buildings", Struct. Eng. Mech., 65(6), 751-760. https://doi.org/10.12989/sem.2018.65.6.751.
- Schueller, G.I. (1997), "A state-of-the-art report on computational stochastic mechanics", Probab. Eng. Mech., 12(4), 197-321. https://doi.org/10.1016/s0266-8920(97)00003-9.
- Schueller, G.I. (2009), "Efficient Monte-Carlo simulation procedures in structural uncertainty and reliability analysisrecent advances", Struct. Eng. Mech., 32(1), 1-20. https://doi.org/10.12989/sem.2009.32.1.001.
- Shinozuka, M. (1972), "Monte Carlo solution of structural dynamics", Comput. Struct., 2(5), 855-874. https://doi.org/10.1016/0045-7949(72)90043-0.
- Simulia, D.S. (2010), ABAQUS Analysis User's Manual, Dassault Syst., Pawtucket, USA.
- Skrzypczak, I., Slowik, M. and Buda-Ozog, L. (2017), "The application of reliability analysis in engineering practice-reinforced concrete foundation", Procedia Eng., 193, 144-151. https://doi.org/10.1016/j.proeng.2017.06.197.
- Stefanou, G. (2009), "The stochastic finite element method: past, present and future", Comput. Meth. Appl. Mech. Eng., 198(9), 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007.
- Stewart, M.G., Foster, S., Ahammed, M. and Sirivivatnanon, V. (2016), "Calibration of Australian Standard AS3600 concrete structures Part II: Reliability indices and changes to capacity reduction factors", Aust. J. Struct. Eng., 17(4), 254-266. https://doi.org/10.1080/13287982.2016.1246215.
- Thomsen, J.H. and Wallace, J.W. (1995), "Displacement based design of reinforced concrete structural walls: an experimental investigation of walls with rectangular and T-shaped cross-sections", Ph.D. Dissertation, Clarkson University, New York, NY, USA.
- UBC (1991), Uniform Building Code, International Conference of Building Officials, Whittier, CA.
- Vahedi, J., Ghasemi, M.R. and Miri, M. (2018), "Structural reliability assessment using an enhanced adaptive Kriging method", Struct. Eng. Mech., 66(6), 677-691. https://doi.org/10.12989/sem.2018.66.6.677.
- Vanmarcke, E., Shinozuka, M., Nakagiri, S., Schueller, G.I. and Grigoriu, M. (1986), "Random fields and stochastic finite elements", Struct. Saf., 3(3), 143-166. https://doi.org/10.1016/0167-4730(86)90002-0.
- Xian, J., Su, C. and Guo, H. (2021), "Seismic reliability analysis of energy-dissipation structures by combining probability density evolution method and explicit time-domain method", Struct. Saf., 88, 102010. https://doi.org/10.1016/j.strusafe.2020.102010.
- Xu, B., Pang, R. and Zhou, Y. (2020), "Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRDs", Eng. Geol., 264, 105412. https://doi.org/10.1016/j.enggeo.2019.105412.