DOI QR코드

DOI QR Code

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Received : 2021.08.06
  • Accepted : 2021.12.02
  • Published : 2021.12.15

Abstract

Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Keywords

Acknowledgement

The research was funded by the Russian Science Foundation, project 19-14-00109. The English language was checked by the Effective Language Tutoring Services.

References

  1. Anderson, C. R., Berdalet, E., Kudela, R. M., Cusak, C. K., Silke, J., O'Rourke, E., Dugan, D., McCammon, M., Newton, J. A., Moore, S. K., Paige, K., Ruberg, S., Morrison, J. R., Kirkpatrick, B., Hubbard, K. & Morell, J. 2019. Scaling up from regional case studies to a global Harmful Algal Bloom observing system. Front. Mar. Sci. 6:250. https://doi.org/10.3389/fmars.2019.00250
  2. Barrett-Jolley, R., Lewis, R., Fallman, R. & Mobasheri, A. 2010. The emerging chondrocyte channelome. Front. Physiol. 1:135. https://doi.org/10.3389/fphys.2010.00135
  3. Berdieva, M., Safonov, P. & Matantseva, O. 2019. Ultrastructural aspects of ecdysis in naked dinoflagellate Amphidinium carterae. Protistology 13:57-63.
  4. Berridge, M. J., Bootman, M. D. & Roderick, H. L. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517-529. https://doi.org/10.1038/nrm1155
  5. Brunet, T. & Arendt, D. 2016. From damage response to action potentials: early evolution of neuronal and contractile modules in stem eukaryotes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 371:20150043. https://doi.org/10.1098/rstb.2015.0043
  6. Burkholder, J. M., Glibert, P. M. & Skelton, H. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
  7. Cembella, A. D. 2003. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420-447. https://doi.org/10.2216/i0031-8884-42-4-420.1
  8. Craven, K. B. & Zagotta, W. N. 2006. CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68:375-401. https://doi.org/10.1146/annurev.physiol.68.040104.134728
  9. Dagenais-Bellefeuille, S. & Morse, D. 2013. Putting the N in dinoflagellates. Front. Microbiol. 4:369. https://doi.org/10.3389/fmicb.2013.00369
  10. Dominguez, D. C. 2004. Calcium signalling in bacteria. Mol. Microbiol. 54:291-297. https://doi.org/10.1111/j.1365-2958.2004.04276.x
  11. Eckert, R. 1965. Bioelectric control of bioluminescence in the dinoflagellate Noctiluca. I. Specific nature of triggering events. Science 147:1140-1142. https://doi.org/10.1126/science.147.3662.1140
  12. Eckert, R. & Sibaoka, T. 1967. Bioelectric regulation of tentacle movement in a dinoflagellate. J. Exp. Biol. 47:433-446. https://doi.org/10.1242/jeb.47.3.433
  13. Eckert, R. & Sibaoka, T. 1968. The flash-triggering act ion potential of the luminescent dinoflagellate Noctiluca. J. Gen. Physiol. 52:258-282. https://doi.org/10.1085/jgp.52.2.258
  14. Fujiu, K., Nakayama, Y., Yanagisawa, A., Sokabe, M. & Yoshimura, K. 2009. Chlamydomonas CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion. Curr. Biol. 19:133-139. https://doi.org/10.1016/j.cub.2008.11.068
  15. Glibert, P. M. 2020. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 91:101583. https://doi.org/10.1016/j.hal.2019.03.001
  16. Guo, X., Wang, Z., Liu, L. & Li, Y. 2021. Transcriptome and metabolome analyses of cold and darkness-induced pellicle cysts of Scrippsiella trochoidea. BMC Genomics 22:526. https://doi.org/10.1186/s12864-021-07840-7
  17. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  18. Hastings, J. W. 2013. Circadian rhythms in dinoflagellates: what is the purpose of synthesis and destruction of proteins? Microorganisms 1:26-32. https://doi.org/10.3390/microorganisms1010026
  19. Helliwell, K. E., Chrachri, A., Koester, J. A., Wharam, S., Verret, F., Taylor, A. R., Wheeler, G. L. & Brownlee, C. 2019. Alternative mechanisms for fast Na+/Ca2+ signaling in eukaryotes via novel class of single-domain voltage-gated channels. Curr. Biol. 29:1503-1511. https://doi.org/10.1016/j.cub.2019.03.041
  20. Hilger, D., Masureel, M. & Kobilka, B. K. 2018. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25:4-12. https://doi.org/10.1038/s41594-017-0011-7
  21. Hille, B. 2001. Ion channels of excitable membranes. 3rd ed. Sinauer Associates, Sunderland, MA, 816 pp.
  22. Horiguchi, T., Kawai, H., Kubota, M., Takahashi, T. & Watanabe, M. 1999. Phototactic responses of four marine dinoflagellates with different types of eyespot and chloroplast. Phycol. Res. 47:101-107. https://doi.org/10.1111/j.1440-1835.1999.tb00290.x
  23. Jaiteh, M., Taly, A. & Henin, J. 2016. Evolution of pentameric ligand-gated ion channels: pro-loop receptors. PLoS ONE 11:e0151934. https://doi.org/10.1371/journal.pone.0151934
  24. Kaczmarek, L. K., Aldrich, R. W., Chandy, K. G., Grissmer, S., Wei, A. D. & Wulff, H. 2017. International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium-activated and sodium-activated potassium channels. Pharmacol. Rev. 69:1-11. https://doi.org/10.1124/pr.116.012864
  25. Katoh, K., Rozewicki, J. & Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20:1160-1166. https://doi.org/10.1093/bib/bbx108
  26. Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amral-Zettler, L. A., Armbrust, E. V., Archibald, J. M., Bharti, A. K., Bell, C. J., Beszteri, B., Bidle, K. D., Cameron, C. T., Campbell, L., Caron, D. A., Cattolico, R. A., Collier, J. L., Coyne, K., Davy, S. K., Deschamps, P., Dyhrman, S. T., Edvardsen, B., Gates, R. D., Gobler, C. J., Greenwood, S. J., Guida, S. M., Jacobi, J. L., Jakobsen, K. S., James, E. R., Jenkins, B., John, U., Johnson, M. D., Juhl, A. R., Kamp, A., Katz, L. A., Kiene, R., Kudryavtsev, A., Leander, B. S., Lin, S., Lovejoy, C., Lynn, D., Marchetti, A., McManus, G., Nedelcu, A. M., Menden-Deuer, S., Miceli, C., Mock, T., Montresor, M., Moran, M. A., Murray, S., Nadathur, G., Nagai, S., Ngam, P. B., Palenik, B., Pawlowski, J., Petroni, G., Piganeau, G., Posewitz, M. C., Rengefors, K., Romano, G., Rumpho, M. E., Rynearson, T., Schilling, K. B., Schroeder, D. C., Simpson, A. G. B., Slamovits, C. H., Smith, D. R., Smith, G. J., Smith, S. R., Sosik, H. M., Stief, P., Theriot, E., Twary, S. N., Umale, P. E., Vaulot, D., Wawrik, B., Wheeler, G. L., Wilson, W. H., Xu, Y., Zingone, A. & Worden, A. Z. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12:e1001889. https://doi.org/10.1371/journal.pbio.1001889
  27. Khanaychenko, A. N., Telesh, I. V. & Skarlato, S. O. 2019. Bloom-forming potentially toxic dinoflagellates Prorocentrum cordatum in marine plankton food webs. Protistology 13:95-125.
  28. Kigundu, G., Cooper, J. L. & Smith, S. M. E. 2018. Hv1 proton channels in dinoflagellates: not just for bioluminescence? J. Eukaryot. Microbiol. 65:928-933. https://doi.org/10.1111/jeu.12627
  29. Krapp, A., David, L. C., Chardin, C., Girin, T., Marmange, A., Leprince, A.-S., Chaillou, S., Ferrario-Mery, S., Meyer, C. & Daniel-Vedele, F. 2014. Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 65:789-798. https://doi.org/10.1093/jxb/eru001
  30. Lodh, S., Yano, J., Valentine, M. S. & Van Houten, J. L. 2016. Voltage-gated calcium channels of Paramecium cilia. J. Exp. Biol. 219:3028-3038. https://doi.org/10.1242/jeb.141234
  31. Lopez, J. J., Jardin, I., Albarran, L., Sanchez-Collado, J., Cantonero, C., Salido, G. M., Smani, T. & Rosado, J. A. 2020. Molecular basis and regulation of store-operated calcium entry. Adv. Exp. Med. Biol. 1131:445-469. https://doi.org/10.1007/978-3-030-12457-1_17
  32. Martinac, B., Saimi, Y. & Kung, C. 2008. Ion channels in microbes. Physiol. Rev. 88:1449-1490. https://doi.org/10.1152/physrev.00005.2008
  33. Matantseva, O., Berdieva, M., Kalinina, V., Pozdnyakov, I., Pechkovskaya, S. & Skarlato, S. 2020. Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum. Sci. Rep. 10:18322. https://doi.org/10.1038/s41598-020-75194-3
  34. Matantseva, O., Pozdnyakov, I., Voss, M., Liskow, I. & Skarlato, S. 2018. The uncoupled assimilation of carbon and nitrogen from urea and glycine by the bloomforming dinoflagellate Prorocentrum minimum. Protist 169:603-614. https://doi.org/10.1016/j.protis.2018.05.006
  35. Mobasheri, A., Matta, C., Uzieliene, I., Budd, E., Martin-Vasallo, P. & Bernotiene, E. 2019. The chondrocyte channelome: a narrative review. Joint Bone Spine 86:29-35. https://doi.org/10.1016/j.jbspin.2018.01.012
  36. Mukherjee, A., Lau, C. S., Walker, C. E., Rai, A. K., Prejean, C. I., Yates, G., Emrich-Mills, T., Lemoine, S. G., Vinyard, D. J., Mackinder, L. C. M. & Moroney, J. V. 2019. Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 116:16915-16920. https://doi.org/10.1073/pnas.1909706116
  37. Nawata, T. & Sibaoka, T. 1979. Coupling between action potential and bioluminescence in Noctiluca: effects of inorganic ions and pH in vacuolar sap. J. Comp. Physiol. 134:137-149. https://doi.org/10.1007/BF00610472
  38. Nguyen, L. -T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268-274. https://doi.org/10.1093/molbev/msu300
  39. Oami, K., Sibaoka, T. & Naitoh, Y. 1988. Tentacle regulating potentials in Noctiluca miliaris: their generation sites and ionic mechanisms. J. Comp. Physiol. A 162:179-185. https://doi.org/10.1007/BF00606083
  40. Okamoto, O. K. & Hastings, J. W. 2003. Novel dinoflagellate clock-related genes identified through microarray analysis. J. Phycol. 39:519-526. https://doi.org/10.1046/j.1529-8817.2003.02170.x
  41. Plattner, H. 2014. Calcium regulation in the protozoan model, Paramecium tetraurelia. J. Eukaryot. Microbiol. 61:95-114. https://doi.org/10.1111/jeu.12070
  42. Pozdnyakov, I., Matantseva, O., Negulyaev, Y. & Skarlato, S. 2014. Obtaining spheroplasts of armored dinoflagellates and first single-channel recordings of their ion channels using patch-clamping. Mar. Drugs 12:4743-4755. https://doi.org/10.3390/md12094743
  43. Pozdnyakov, I., Matantseva, O. & Skarlato, S. 2018. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci. Rep. 8:3539. https://doi.org/10.1038/s41598-018-21897-7
  44. Pozdnyakov, I., Safonov, P. & Skarlato, S. 2020. Diversity of voltage-gated potassium channels and cyclic nucleotide-binding domain-containing channels in eukaryotes. Sci. Rep. 10:17758. https://doi.org/10.1038/s41598-020-74971-4
  45. Pozdnyakov, I. & Skarlato, S. 2012. Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108-115.
  46. Pozdnyakov, I. A. & Skarlato, S. O. 2015. Analysis of the dinoflagellate Prorocentrum minimum transcriptome: identifying the members of the voltage-gated cation channel superfamily. Cell Tissue Biol. 9:483-492. https://doi.org/10.1134/S1990519X15060085
  47. Rambaut, A. & Drummond, A. J. 2015. FigTree, ver. 1.4. 2. The Author.
  48. Rodriduez, J. D., Haq, S., Bachvaroff, T., Nowak, K. F., Nowak, S. J., Morgan, D., Cherny, V. V., Sapp, M. M., Bernstein, S., Bolt, A., DeCoursey, T. E., Place, A. R. & Smith, S. M. E. 2017. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS ONE 12:e0171594. https://doi.org/10.1371/journal.pone.0171594
  49. Saldarriaga, J. F. & 'Max' Taylor, F. J. R. 2017. Dinoflagellata. In Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. (Eds.) Handbook of the Protists. Springer, Cham, pp. 625-678.
  50. Schneider, F., Grimm, C. & Hegemann, P. 2015. Biophysics of channelrhodopsin. Annu. Rev. Physiol. 44:167-186.
  51. Sharma, T., Dreyer, I., Kochian, L. & Pineros, M. A. 2016. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front. Plant. Sci. 7:1488. https://doi.org/10.3389/fpls.2016.01488
  52. Sibaoka, T. & Eckert, R. 1967. An electrophysiological study of the tentacle-regulating potentials in Noctiluca. J. Exp. Biol. 47:447-459. https://doi.org/10.1242/jeb.47.3.447
  53. Skarlato, S. O., Telesh, I. V., Matantseva, O. V., Pozdnyakov, I. A., Berdieva, M. A., Schubert, H., Filatova, N. A., Knyazev, N. A. & Pechkovskaya, S. A. 2018. Studies of bloom-forming dinoflagellates Prorocentrum minimum in fluctuating environment: contribution to aquatic ecology, cell biology and invasion theory. Protistology 12:113-157.
  54. Smith, S. M. E., Morgan, D., Musset, B., Cherny, V. V., Place, A. R., Hastings, J. W. & DeCoursey, T. E. 2011. Voltage-gated proton channel in a dinoflagellate. Proc. Natl. Acad. Sci. U. S. A. 108:18162-18167. https://doi.org/10.1073/pnas.1115405108
  55. Stelly, N., Mauger, J. -P., Claret, M. & Adoutte, A. 1991. Cortical alveoli of Paramecium: a vast submembranous calcium storage compartment. J. Cell Biol. 113:103-112. https://doi.org/10.1083/jcb.113.1.103
  56. Taylor, A. R., Brownlee, C. & Wheeler, G. L. 2012. Proton channels in algae: reasons to be excited. Trends Plant Sci. 17:675-684. https://doi.org/10.1016/j.tplants.2012.06.009
  57. Taylor, A. R., Chrachri, A., Wheeler, G., Goddard, H. & Brownlee, C. 2011. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biol. 9:e1001085. https://doi.org/10.1371/journal.pbio.1001085
  58. Telesh, I., Schubert, H. & Skarlato, S. 2021. Abiotic stability promotes dinoflagellate blooms in marine coastal ecosystems. Estuar. Coast. Shelf Sci. 251:107239. https://doi.org/10.1016/j.ecss.2021.107239
  59. Tikhonov, D. B. & Zhorov, B. S. 2005. Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys. J. 88:184-197. https://doi.org/10.1529/biophysj.104.048173
  60. Tsim, S. T., Wong, J. T. & Wong, Y. H. 1997. Calcium ion dependency and the role of inositol phosphates in melatonin-induced encystment of dinoflagellates. J. Cell Sci. 110:1387-1393. https://doi.org/10.1242/jcs.110.12.1387
  61. Van Dolah, F. M., Lidie, K. B., Morey, J. S., Brunelle, S. A., Ryan, J. C., Monroe, E. A. & Haynes, B. L. 2007. Microarray analysis of diurnal- and circadian-regulated genes in the Florida red-tide dinoflagellate Karenia brevis (Dinophyceae). J. Phycol. 43:741-752. https://doi.org/10.1111/j.1529-8817.2007.00354.x
  62. Wright, J. R., Amisten, S., Goodall, A. H. & Mahaut-Smith, M. P. 2016. Transcriptomic analysis of the ion channe-lome of human platelets and megakaryocytic cell lines. Thromb. Haemost. 116:272-284. https://doi.org/10.1160/TH15-11-0891
  63. Yazawa, M., Ferrante, C., Feng, J., Mio, K., Ogura, T., Zhang, M., Lin, P.-H., Pan, Z., Komazaki, S., Kato, K., Nishi, M., Zhao, X., Weisleder, N., Sato, C., Ma, J. & Takeshima, H. 2007. TRIC channels essential for Ca2+ handling in intracellular stores. Nature 448:78-82. https://doi.org/10.1038/nature05928
  64. Yu, F. H., Yarov-Yarovoy, V., Gutman, G. A. & Catterall, W. A. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387-395. https://doi.org/10.1124/pr.57.4.13