References
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Communications of the ACM Vol. 60, No. 6, pp.84-90 May. 2017. DOI: 10.1145/3065386
- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. Vol. 27, No. 1, pp.3104-3112, Dec. 2014.
- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. "The elements of statistical learning," New York: Springer series in statistics, Vol. 1. No. 10. 2001.
- Malinin, Andrey, Bruno Mlodozeniec, and Mark Gales. "Ensemble distribution distillation." arXiv preprint arXiv:1905.00076, 2019.
- Ko, Hyungjin, et al. "Loss-Driven Adversarial Ensemble Deep Learning for On-Line Time Series Analysis." Sustainability Vol. 11, No. 12, pp. 1-24 Jun. 2019 DOI: DOI:10.3390/su11123489.
- Sesmero, M. Paz, Juan M. Alonso-Weber, and Araceli Sanchis. "CCE: An ensemble architecture based on coupled ANN for solving multiclass problems." Information Fusion Vol. 58, pp. 132-152. Jun. 2020. DOI: 10.1016/j.inffus.2019.12.015
- Park, S., J. Hah, and J. Lee. "Inductive ensemble clustering using kernel support matching." Electronics Letters Vol. 53, No. 25, pp. 1625-1626 Dec. 2017. DOI: 10.1049/el.2017.2159
- Sun, Xu, et al. "Label embedding network: Learning label representation for soft training of deep networks." arXiv preprint arXiv:1710.10393 , 2017.
- Sellah, Smail, and Vincent Hilaire. "Label Clustering for a Novel Problem Transformation in Multi-label Classification." J. UCS Vol.26 No.1 pp. 71-88. Jan. 2020,
- Tao, Sean. "Deep neural network ensembles." International Conference on Machine Learning, Optimization, and Data Science. Springer, Cham, 2019.
- Low, Cheng-Yaw, Jaewoo Park, and Andrew Beng-Jin Teoh. "Stacking-based deep neural network: Deep analytic network for pattern classification." IEEE Transactions on Cybernetics, Vol. 50, No. 12, Dec. 2019. DOI: 10.1109/TCYB.2019.2908387
- Liu, J. Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., & Lakshminarayanan, B. "Simple and principled uncertainty estimation with deterministic deep learning via distance awareness." Advances in Neural Information Processing Systems Dec. 2020.
- Gabrie, M., Manoel, A., Luneau, C., Barbier, J., Macris, N., Krzakala, F., & Zdeborova, L. "Entropy and mutual information in models of deep neural networks." Journal of Statistical Mechanics: Theory and Experiment, Vol. 50, No. 12, pp. 5021-5034 Dec, 2020. DOI: 10.1109/TCYB.2019.2908387
- Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., ... & Nahavandi, S. A. "Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges." arXiv preprint arXiv:2011.06225. 2020