DOI QR코드

DOI QR Code

The Development and Trend of Eco-Friendly Water-Dispersible Polyurethane Field.

친환경 수분산 폴리우레탄 분야의 개발과 발전 동향

  • Lee, Joo-Youb (Department of fire and Disaster Prevention, Jungwon University)
  • 이주엽 (중원대학교 융합과학기술대학 소방방재학과)
  • Received : 2021.11.30
  • Accepted : 2021.12.14
  • Published : 2021.12.30

Abstract

Eco-friendly polyurethane can be defined as a highly utilized material used in various fields. The various structural properties of the synthesis of isocyanates and polyols provide versatility and customization for use in the manufacturing field. The characteristics of polyurethane vary widely from soft touch coatings to hard building materials like rocks. These mechanical, chemical and biological properties and ease of alignment are drawing tremendous attention not only in the field of research but also in related industries. In order to improve the performance of water-dispersible polyurethane materials, it can be derived through processes such as adjusting the blending of raw materials and adding additives and nanomaterials. This study highlights the basic chemical structure of eco-friendly water-dispersible polyurethane in the fields of medical science, automobiles, coatings, adhesives, paints, textiles, marine industries, wood composite materials, and clothing.

친환경 폴리우레탄은 다양한 분야에서 다양하게 사용되는 활용성이 높은 소재로 정의 할 수 있다. 이소시아네이트와 폴리올의 합성에 따른 다양한 구조적 특성 관계는 제조현장에서 사용상의 다양성과 맞춤화를 제공하고 있다. 폴리우레탄의 특성은 부드러운 터치 코팅부터 바위처럼 단단한 건축 자재에 이르기까지 활용 범위가 매우 다양하다. 이러한 기계적, 화학적 및 생물학적 특성과 맞춤의 용이성은 연구분야에서 뿐만 아니라 관련 산업에서도 엄청난 관심을 불러오고 있다. 수분산 폴리우레탄 재료의 성능향상을 높이기 위해서는 원료의 배합을 조정하고 첨가제와 나노 소재등을 추가하는 등의 과정을 통해 이끌어 낼 수 있다. 본 연구에서는 의료 과학, 자동차, 코팅, 접착제, 페인트, 섬유, 해양 산업, 목재 복합 재료 및 의류분야의 친환경 수분산 폴리우레탄 기본 화학 구조를 조명한다.

Keywords

References

  1. Y. K. Yang, T. S. Hwang, E. H. Hwang, "Preparation of Urethane Nanocomposites with inorganic Nono Fillers and Their Physical properties" Polymer(Korea). Vol.30, No.29, (2006).
  2. A. R. Marrion (Ed.), "The Chemistry and Physics of Coatings" Royal Society of Chemistry Paperbacks. 1 (1994).
  3. J. Y. Lee, and K. J. Kim, "Study on Mechanical Properties of Waterborne Polyurethane-Acrylic Hybrid Resin for Leather Coatings", Journal of Korean oil chemist's, Vol.27, pp.188, (2010).
  4. S. S. Lee, S. H. Lee, D. S. Lee, "Preparation and Properties of waterborne Polyurethane Based on Mixtures of Hybroxy-Terminated Polybutadien and Poly(propylene glycol)". Polymer(Korea), Vol.30, pp.152 (2006)
  5. T.Calvo-Correas, L Ugarte, P. J. Tatowska, R. Sanzberro, "Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling". Polymer Degradation and Stability, Vol.144, pp.411-419, (2017) https://doi.org/10.1016/j.polymdegradstab.2017.09.001
  6. M. B. Karimi, S. Hassanajili, "Short fiber/polyurethane composite membrane for gas separation", Journal of Membrane Science, Vol.543, pp 40-48, (2017). https://doi.org/10.1016/j.memsci.2017.08.043
  7. C. P. Chai, Ma Y. f. G. p. Li, G. Zhen, S.Y Ma., Y. J. Luo, "The preparation of high solid content waterborne polyurethane by special physical blending", Progress in Organic Coatings, Vol.115, pp.79-85, (2017). https://doi.org/10.1016/j.porgcoat.2017.10.021
  8. M. Fuensantaa, J. A. Jofre-Rechea, F. Rodriguez-Llansolab, V. Costab, J. I. Iglesiasb, J. M. Martin-Martinez, "Structural characterization of polyurethane ureas and waterborne polyurethane urea dispersions made with mixtures of polyester polyol and polycarbonate diol", Progress in Organic Coatings, Vol.112, pp.141-152, (2017). https://doi.org/10.1016/j.porgcoat.2017.07.009
  9. S. Saalah, L. C. Abdullah, M. M.n Aung, M. Z. Salleh, D. R. A. Biak, M. Basri, E. R. Jusoh, "Waterborne polyurethane dispersions synthesized from jatropha oil", Industrial Crops and Products, Vol.64, pp.194-200, (2015). https://doi.org/10.1016/j.indcrop.2014.10.046
  10. S. k. Gaddam, A. Palanisamy, "Anionic waterborne polyurethane-imide dispersions from cottonseed oil based ionic polyol", Industrial Crops and Products, Vol.96, pp.132-139, (2017). https://doi.org/10.1016/j.indcrop.2016.11.054
  11. L. Wang, Y. Zhu, J. Qu, "Preparation and assistant-film-forming performance of aqueous polyurethane dispersions", Progress in Organic Coatings, Vol.105, pp.9-17, (2017). https://doi.org/10.1016/j.porgcoat.2016.12.005
  12. K. Wazarkar, M. Kathalewar, A. Sabnis, "Improvement in flame retardancy of polyurethane dispersions by newer reactive flame retardant", Progress in Organic Coatings, Vol.87, pp.75-82, (2015). https://doi.org/10.1016/j.porgcoat.2015.05.016
  13. V. Garcia-Pacios, V. Costa, M. Colera, J. M. Martin-Martinez, "Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings", Progress in Organic Coatings, Vol.71, pp.136-146 (2011). https://doi.org/10.1016/j.porgcoat.2011.01.006
  14. M. Tielemans, P. Roose, C. Ngo, R. Lazzaroni, P. Leclere, "Multiphase coatings from complex radiation curable polyurethane dispersions", Progress in Organic Coatings, Vol.75, pp.560-568, (2012). https://doi.org/10.1016/j.porgcoat.2012.05.010
  15. Y. Lu, R. C. Larock, "Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties", Progress in Organic Coatings, Vol.69, pp.31-37, (2010). https://doi.org/10.1016/j.porgcoat.2010.04.024
  16. J. Ma, Q. Xu, D. Gao, J. Zhou, J. Zhang, "Blend composites of caprolactam-modified casein and waterborne polyurethane for film-forming binder: Miscibility, morphology and properties", Polymer Degradation and Stability, Vol.97, pp.1545-1552, ()2012). https://doi.org/10.1016/j.polymdegradstab.2012.04.015
  17. D. Mercier-Bouchard, S. Benoit, A. Doyen, M. Britten, Y. Pouliot, "Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes", Journal of Dairy Science, Vol.100, pp.8838-8848, (2017). https://doi.org/10.3168/jds.2017-13015
  18. Y. Wang, J. Ma, Q. Xu, J. Zhang, "Fabrication of antibacterial casein-based ZnO nanocomposite for flexible coatings", Materials & Design, Vol.113, pp.240-245, (2017). https://doi.org/10.1016/j.matdes.2016.09.082
  19. L. Olle, G. Baquero, M. Sole, R. Cuadros, A. Bacardit "Application of highly carboxylate resins in aqueous emulsion for leather coating avoiding the use of isopropyl alcohol", Journal of Cleaner Production, Vol.129, pp.23-29, (2016). https://doi.org/10.1016/j.jclepro.2016.04.134
  20. H. Pandya, P. Mahanwar, "Fundamental insight into anionic aqueous polyurethane dispersions", Advanced Industrial and Engineering Polymer Research, Vol.3, pp.102-110, (2020). https://doi.org/10.1016/j.aiepr.2020.07.003
  21. Y. Luo, D. Xie, Y. Chena, T. Han, R. Chen, X. Sheng, Y. iMei, "Synergistic effect of ammonium polyphosphate and α-zirconium phosphate in flame-retardant poly(vinyl alcohol) aerogels", Polymer Degradation and Stability, Vol.170, Article. 109019, (2019).
  22. J. Hu, J. Shan, D. Wen, X. Liu, J. Zhao, Z. Tong, "Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins", Polymer Degradation and Stability, Vol.109, pp. 218, (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.026
  23. W. R White, D. T. Durocher, "Recycling of Rigid Polyurethane Articles and Reformulation into a Variety of Polyurethane Applications" Journal of .cellular plastics, Vol.33, No.5, pp.477-86, (1997). https://doi.org/10.1177/0021955X9703300504
  24. D. Saihi, I. Vroman, S. Giraud, S. Bourbigot, "Microencapsulation of ammonium phosphate with a polyurethane shell. Part II", Interfacial polymerizatin technique", Reactive and Functional Polymers, Vo.l66, No.10, pp. 1118, (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.02.001
  25. R. Sadeghi, H. B. Kahaki, "Thermodynamics of aqueous solutions of poly ethylene glycol di-methyl ethers in the presence or absence of ammonium phosphate salts", Fluid Phase Equilibria, Vol.306, No.2, pp.219, (2011). https://doi.org/10.1016/j.fluid.2011.04.012
  26. W. Han, H. Chen, X. Li, T. Zhang, "Thermodynamic modeling of magnesium ammonium phosphate cement and stability of its hydration products", Cement and Concrete Research, Vol.138, Article. 106223, (2020).
  27. V. Garcia-Pacios, V. Costa , M. Colera, JM. Martin-Martinez. "Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings". Progress of Organic Coating, Vol.71, pp.36-49, (2011). https://doi.org/10.1016/j.porgcoat.2010.12.007
  28. I.W. Cheong, H. C. Kong, J.S. Shin, J. H. Kim. "Kinetic aspects of chain extension reaction using water-soluble diamines in aqueous polyurethane dispersion". Journal of Dispersion Science Technology, Vol.23, pp.1-8, (2002). https://doi.org/10.1080/01932690208984184
  29. Y. S. Kwak, S.W. Park, Y H. Lee, H. D. Kim. "Preparation and properties of waterborne polyurethanes for water-vapor-permeable coating materials". Journal of Application Polymer Science, Vol.89, pp.123-129, (2003). https://doi.org/10.1002/app.12128
  30. S. M. Cakic, I. S. Ristic, I. Krakovsky, D. T. Stojiljkovis, P. Belsky, L. Kollova. "Crystallizationand thermal properties in waterborne polyurethane elastomers: influence of mixed soft segment block". Material Chemist Physics, Vol.144, pp.31-40, (2014). https://doi.org/10.1016/j.matchemphys.2013.12.008
  31. U. Dorn, S. Enders, "Heat of mixing and liquideliquid-equilibrium of water + polypropylene glycol (PPG) with different molecular weights and water + propylene glycol dimethyl ether", Fluid Phase Equilibria, Vol.424, pp.58-67, (2016). https://doi.org/10.1016/j.fluid.2015.10.003
  32. A. Santamaria-Echart, I. Fernandes L. Ugarte, F. Barreiro, M. Corcuera, A. Eceiza, "Green nanocomposites from Salvia-based waterborne polyurethane-urea dispersions reinforced with nanocellulose", Progress in Organic Coatings, Vol.50, Article.105989, (2021).
  33. M. Ocepek, J. Zabret, J. Kecelj, P. Venturini, J. Golob, "Monitoring of polyurethane dispersion after the synthesis, Mater". Technology. Vol.49, No.4, (2015).
  34. X. Cui, T. Hiraoka, T. Honda, Y. Hsu, T. Asoh, H. Uyama, "Oligoether grafting on cellulose microfibers for dispersion in poly(propylene glycol) and fabrication of reinforced polyurethane composite", Composites Science and Technology, Online.30, Article.108595, (2020).
  35. H. Liang, S. Wang, C. Zhang, "Aqueous anionic polyurethane dispersions from castor oil", Industrial Crops and Products, Vol.122, pp.182-189, (2018). https://doi.org/10.1016/j.indcrop.2018.05.079
  36. M. Fuensanta, J. Jofre-RecheJose, M. Martin-Martinez, "Structure and adhesion properties before and after hydrolytic ageing of polyurethane urea adhesives made with mixtures of waterborne polyurethane dispersions", International Journal of Adhesion and Adhesives, Vol.85, pp.165-176, (2018). https://doi.org/10.1016/j.ijadhadh.2018.06.002
  37. L. Guo, S. Huang, J. Qu, "Synthesis and properties of high-functionality hydroxyl-terminated polyurethane dispersions", Progress in Organic Coatings, Vol.119, pp.214-220, (2018). https://doi.org/10.1016/j.porgcoat.2018.02.033
  38. G.L. Garcia, V. Lopez-Rios, A. Espinosa,J. Abenojar, F. Velasco, "A.Toro, Cavitationresistance of epoxy-based multilayercoatings: Surface damage and crackgrowth kinetics during the incubation stage", Wear, Vol. 316, 2014
  39. S. Hattori, N. Mikami, "Cavitation erosion resistance of stellite alloy weldoverlays", Wear, Vol. 267, 2009
  40. J.T. Chang, C.H. Yeh, J.L. He, K.C. Chen, "Cavitation erosion and corrosion behaviorof Ni-Al intermetallic coatings", Wear, Vol.255, (2003).
  41. B. Liu, J. Cai, X. Huai, "Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls", International Journal of Heat and Mass Tranfer, Vol. 78, 2014
  42. M. Dular, B. Bachert, B. Stoffel, B. Sirok, "Relationship between cavitation structures and cavitation damage", Wear, Vol. 257, (2004).