Acknowledgement
The authors are grateful to the referee for his/her suggestions. First and third author would like to thank UGC, Govt. of India for the financial support in the form of JRF. Prof. Kallol Paul would like to thank RUSA 2.0, Jadavpur University for the partial support.
References
- A. A. Abdurakhmanov, Geometry of a Hausdorff domain in problems of localization of the spectrum of arbitrary matrices, Math. USSR Sb., 59(1988), 39-51. https://doi.org/10.1070/SM1988v059n01ABEH003123
- A. Abu-Omar and F. Kittaneh, Numerical radius inequalities for n×n operator matrices, Linear Algebra Appl., 468(2015), 18-26. https://doi.org/10.1016/j.laa.2013.09.049
- A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math., 45(4)(2015), 1055-1065. https://doi.org/10.1216/RMJ-2015-45-4-1055
- A. Abu-Omar and F. Kittaneh, Estimates for the numerical radius and the spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials, Ann. Funct. Anal., 5(1)(2014), 56-62. https://doi.org/10.15352/afa/1391614569
- P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra Appl., 573(2019), 166-177. https://doi.org/10.1016/j.laa.2019.03.017
- P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities of operator matrices with applications, Linear Multilinear Algebra, 69(9)(2021), 1635-1644. https://doi.org/10.1080/03081087.2019.1634673
- S. Bag, P. Bhunia and K. Paul, Bounds of numerical radius of bounded linear operator using t-Aluthge transform, Math. Inequal. Appl., 23(3)(2020), 991-1004.
- P. Bhunia, S. Bag and K. Paul, Bounds for zeros of a polynomial using numerical radius of Hilbert space operators, Ann. Funct. Anal., 12, 21(2021).
- P. Bhunia, K. Paul and R. K. Nayak, Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices, Math. Inequal. Appl., 24(1)(2021), 167-183.
- M. Fujii and F. Kubo, Buzano's inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117(1993), 359-361. https://doi.org/10.1090/S0002-9939-1993-1088441-X
- K. E. Gustafson and D. K. M. Rao, Numerical Range, The field of values of linear operators and matrices, Springer, New York, 1997.
- R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
- O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for 2 × 2 operator matrices, Studia Math., 210(2012), 99-115. https://doi.org/10.4064/sm210-2-1
- I. B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory, 37(2000), 437-448. https://doi.org/10.1007/BF01192831
- F. Kittaneh and K. Shebrawi, Bounds for the zeros of polynomials from matrix inequalities- II, Linear Multilinear Algebra., 55(2007), 147-158. https://doi.org/10.1080/03081080600665481
- F. Kittaneh, Bounds for the zeros of polynomials from matrix inequalities, Arch. Math. (Basel), 81(2003), 601-608. https://doi.org/10.1007/s00013-003-0525-6
- F. Kittaneh, Singular values companion matrices and bounds on zeros of polynomials, Siam J. Matrix Anal. Appl., 16(1995), 333-340. https://doi.org/10.1137/S0895479893260139
- K. Paul and S. Bag, On the numerical radius of a matrix and estimation of bounds for zeros of a polynomial, Int. J. Math. Math. Sci., 2012(2012) Article Id 129132.
- K. Shebrawi, Numerical radius inequalities for certain 2×2 operator matrices II, Linear Algebra Appl., 523(2017), 1-12. https://doi.org/10.1016/j.laa.2017.02.019
- T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 178(2007) 83-89. https://doi.org/10.4064/sm178-1-5