DOI QR코드

DOI QR Code

Abnormal System Operation Detection by Comparing QR Code-Encoded Power Consumption Patterns in Software Execution Control Flow

QR 코드로 인코딩된 소프트웨어 실행 제어 흐름 전력 소비 패턴 기반 시스템 이상 동작 감지

  • Kang, Myeong-jin (School of Electronics Engineering, Kyungpook National University) ;
  • Park, Daejin (School of Electronics Engineering, Kyungpook National University)
  • Received : 2021.09.09
  • Accepted : 2021.09.20
  • Published : 2021.11.30

Abstract

As embedded system are used widely and variously, multi-edge system, which multiple edges gather and perform complex operations together, is actively operating. In a multi-edge system, it often occurs that an abnormal operation at one edge is transferred to another edge or the entire system goes down. It is necessary to determine and control edge anomalies in order to prevent system down, but this can be a heavy burden on the resource-limited edge. As a solution to this, we use power consumption data to check the state of the edge device and transmit it based on a QRcode to check and control errors at the server. The architecture proposed in this paper is implemented using 'chip-whisperer' to measure the power consumption of the edge and 'Raspberry Pi 3' to implement the server. As a result, the proposed architecture server showed successful data transmission and error determination without additional load appearing at the edge.

임베디드 시스템의 활발한 사용으로 스마트 팩토리와 같이 여러 에지가 모여서 함께 복합적인 동작을 하게 되는 멀티 에지 시스템들이 동작되고 있다. 멀티 에지 시스템에서 하나의 에지에서의 이상 동작이 다른 에지로 전달되거나 전체 시스템이 다운되는 경우가 자주 발생한다. 이러한 시스템에서 각 에지의 이상 동작을 판단하고 제어하는 것이 중요하지만, 이는 성능의 한계가 존재하는 작은 에지의 임베디드 시스템에 부하를 가한다. 이러한 시스템에서 우리는 전력 소비 데이터를 사용하여 에지 장치의 상태를 확인하고 이를 QR코드 기반으로 데이터를 전송하여 서버에서 이상 동작을 확인하고 제어하려 한다. 논문에서 제안된 아키텍처는 에지의 전력 소모 데이터를 측정하기 위해 'chip-whisperer'를 사용하고 서버를 구현하기 위해 '라즈베리 파이'를 사용하여 구현하였다. 그 결과 제안된 아키텍처서버는 성공적인 데이터 전송 및 이상 동작 판정을 보였으며 에지에서 추가 부하가 나타나지 않음을 확인하였다.

Keywords

Acknowledgement

This study was supported by the BK21 FOUR project funded by the Ministry of Education, Korea (4199990113966, 10%), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2005099, 10%), and Ministry of Education (NRF-2018R1A6A1A03025109, 10%). This work was partly supported by Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00944, Metamorphic approach of unstructured validation/verification for analyzing binary code, 70%

References

  1. M. Kang and D. Park, "Lightweight Microcontroller with Parallelized ECC-Based Code Memory Protection Unit for Robust Instruction Execution in Smart Sensors," Sensors 2021, vol. 21, no. 16, pp. 5508. 2021. doi:10.3390/s21165508.
  2. Y. Sazeides, A. Bramnik, R. Gabor, C. Nicopoulos, R. Canal, D. Konstantinou, and G. Dimitrakopoulos, "2D Error Correction for F/F based Arrays using In-Situ Real-Time Error Detection (RTD)," 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1-4, 2020. doi: 10.1109/DFT50435.2020.9250878.
  3. W. Wang, D. Mosse, J. G. Pickel, and D. Cole, "Work-in-Progress: Cross-Layer Real-Time Scheduling for Wireless Control System," 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 149-152, 2017. doi: 10.1109/RTAS.2017.24.
  4. C. Ma, Y. Wang, J. Zhang, K. Chen, F. Gong, T. Chen, and S. Chen, "Research on user electricity consumption behavior and energy consumption modeling in big data environment," 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 220-224, 2021. doi: 10.1109/ICBAIE52039.2021.9389990.
  5. A. H. Sabry, F. H. Nordin, A. H. Sabry, and M. Z. A. Ab Kadir, "Fault Detection and Diagnosis of Industrial Robot Based on Power Consumption Modeling," in IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7929-7940, Sept. 2020. doi: 10.1109/TIE.2019.2931511.
  6. R. Chen, J. Li, and W. Liu, "Lattice-reduction-aided robust detection for MIMO systems with channel estimation error," 2010 International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1-5, 2010. doi: 10.1109/WCSP.2010.5633448.
  7. D. Lee, M. Kang, P. Plesznik, J. Cho, and D. Park, "Scrambling Technique of Instruction Power Consumption for Side-Channel Attack Protection," 2020 International Conference on Electronics, Information, and Communication (ICEIC), pp. 1-2, 2020. doi: 10.1109/ICEIC49074.2020.9051111.
  8. H. Kim, J. Cho, and D. Park, "Graphical Patterning-Platform of Software Malfunction of Software Malfunction for Power Profile-based Side-Channel Analysis," 2019 IEEE International Conference on Consumer Electronics -Taiwan (ICCE-TW), pp. 1-2, 2019. doi: 10.1109/ICCE-TW46550.2019.8991899.
  9. V. B. Thati, J. Vankeirsbilck, and J. Boydens, "Comparative study on data error detection techniques in embedded systems," 2016 XXV International Scientific Conference Electronics (ET), pp. 1-4, 2016. doi: 10.1109/ET.2016.7753517.
  10. A. H. Tank, M. M. Unde, B. J. Patel, and P. Raskar, "Storage and transmission of information using grey level QR (quick-response) code structure," 2016 Conference on Advances in Signal Processing (CASP), pp. 402-405, 2016. doi: 10.1109/CASP.2016.7746204.
  11. H. J. Galiyawala and K. H. Pandya, "To increase data capacity of QR code using multiplexing with color coding: An example of embedding speech signal in QR code," 2014 Annual IEEE India Conference (INDICON), pp. 1-6, 2014. doi: 10.1109/INDICON.2014.7030441.