DOI QR코드

DOI QR Code

Deep Reinforcement Learning based Antenna Selection Scheme For Reducing Complexity and Feedback Overhead of Massive Antenna Systems

거대 다중 안테나 시스템의 복잡도와 피드백 오버헤드 감소를 위한 심화 강화학습 기반 안테나 선택 기법

  • Kim, Ryun-Woo (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Jeong, Moo-Woong (Smart Ship ICT-Convergence Research Center, Research Institute of Medium & Small Shipbuilding) ;
  • Ban, Tae-Won (Department of Information and Communication Engineering, Gyeongsang National University)
  • Received : 2021.09.09
  • Accepted : 2021.09.16
  • Published : 2021.11.30

Abstract

In this paper, an antenna selection scheme is proposed in massive multi-user multiple input multiple output (MU-MIMO) systems. The proposed antenna selection scheme can achieve almost the same performance as a conventional scheme while significantly reducing the overhead of feedback by using deep reinforcement learning (DRL). Each user compares the channel gains of massive antennas in base station (BS) to the L-largest channel gain, converts them to one-bit binary numbers, and feed them back to BS. Thus, the feedback overhead can be significantly reduced. In the proposed scheme, DRL is adopted to prevent the performance loss that might be caused by the reduced feedback information. We carried out extensive Monte-Carlo simulations to analyze the performance of the proposed scheme and it was shown that the proposed scheme can achieve almost the same average sum-rates as a conventional scheme that is almost optimal.

본 논문에서는 다중 사용자 거대 다중 안테나 시스템에서 안테나 선택 기법을 제안한다. 제안된 안테나 선택 기법은 심화 강화학습 네트워크를 활용함으로써 피드백 오버헤드를 획기적으로 낮추면서 기존 방식과 거의 같은 성능을 얻을 수 있다. 각 사용자는 기지국의 거대 안테나들과 형성된 채널의 이득 값을 L번째 큰 채널 이득과 비교하여 대소관계에 따라서 단일 비트의 이진수로 변환하여 피드백함으로써 기존 피드백 방식보다 오버헤드를 낮출 수 있다. 제안 방식에서는 감소한 피드백 정보로 인한 성능 저하를 방지하기 위해서 심화 강화학습 네트워크를 활용하였다. 제안 방식의 성능을 분석하기 위하여 다양한 환경에서 시뮬레이션을 수행하였으며, 제안 방식이 최적 방식에 가까운 기존 방식과 유사한 평균 전송률을 얻을 수 있음을 확인하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(Ministry of Education) (No. 2020R1I1A3061195, Development Of Wired and Wireless Integrated Multimedia-Streaming System Using Exclusive OR-based Coding).

References

  1. Mobile data traffic outlook [Internet]. Available: https://www.ericsson.com/en/mobility-report/dataforecasts/mobile-traffic-forecast.
  2. Cisco White Paper, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, Feb. 2019.
  3. K. S. Kim, Y. H. Kang, and C. K. Kim, "Research Trend in 5G-TSN for Industrial IoT," Electronics and Telecommunications Trends, vol. 35, no. 5, pp. 43-45, Oct. 2020. https://doi.org/10.22648/ETRI.2020.J.350504
  4. C. M. Chen, V. Volski, L. Van der Perre, G. A. Vandenbosch, and S. Pollin, "Finite large antenna arrays for massive MIMO: Characterization and system impact," IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, Dec. 2017.
  5. R. Chataut and R. Akl, "Massive MIMO systems for 5G and beyond Networks-Overview, Recent Trends, Challenges, and Future Research Direction," Sensors, vol. 20, no. 10, May. 2020.
  6. S. Jacobsson, U. Gustavsson, G. Durisi, and C. Studer, "Massive MU-MIMO-OFDM uplink with hardware impairments: Modeling and analysis," 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 1829-1835, 2018.
  7. U. Gustavsson, C. Sanchez-Perez, T. Eriksson, F. Athley, G. Durisi, P. Landin, and L. Svensson, "On the impact of hardware impairments on massive MIMO," in IEEE Globecom Workshops (GC Wkshps), Austin, pp. 294-300, 2014.
  8. H. Nosrati, E. Aboutanios, and D. Smith, "Multi-Stage Antenna Selection for Adaptive Beamforming in MIMO Radar," in IEEE Transactions on Signal Processing, vol. 68, pp. 1374-1389, 2020. https://doi.org/10.1109/tsp.2020.2973544
  9. G. Jin, C. Zhao, Z. Fan, and J. Jin, "Antenna selection in TDD massive MIMO systems," Mobile Networks and Applications, pp. 1-7, 2019.
  10. T. W. Ban, M. W. Jeong, and B. C. Jung, "User and Antenna Joint Selection Scheme in Multiple User Massive MIMO Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 1, pp. 77-82, Jan. 2015. https://doi.org/10.6109/JKIICE.2015.19.1.77
  11. S. Shim, J. S. Kwak, R. W. Heath, and J. G. Andrews, "Block diagonalization for multi-user MIMO with other-cell interference," IEEE Trans. Wireless Comm., vol. 7, no. 7, pp. 2671-2681, Jul. 2008. https://doi.org/10.1109/TWC.2008.070093
  12. IEEE Std. 754-2019, IEEE Standard for Floating-Point Arithmetic, IEEE, Piscataway, N.J., 1995.