DOI QR코드

DOI QR Code

Experimental Investigation of a High-repetition-rate Pr3+:YLF Laser with Single-frequency Oscillation

  • Dai, Weicheng (The Key Laboratory of Jilin Province Solid-State Laser Technology and Application, Changchun University of Science and Technology) ;
  • Jin, Long (The Key Laboratory of Jilin Province Solid-State Laser Technology and Application, Changchun University of Science and Technology) ;
  • Dong, Yuan (The Key Laboratory of Jilin Province Solid-State Laser Technology and Application, Changchun University of Science and Technology) ;
  • Jin, Guangyong (The Key Laboratory of Jilin Province Solid-State Laser Technology and Application, Changchun University of Science and Technology)
  • Received : 2021.06.04
  • Accepted : 2021.10.15
  • Published : 2021.12.25

Abstract

We demonstrate a Pr3+:YLF 639.7-nm laser with single-frequency output based on the Q-switched pre-lase technology, pumped by a fiber-coupled GaN blue laser diode. The pre-lase technology is realized by the step-type loss of the acousto-optical Q-switched device. The conclusions of the theoretical research are verified experimentally. The mode-suppression ratio was 44 dB at the single-frequency laser output. Detection by interferometer verified the realization of the stable single-frequency laser. In addition, the emission spectrum had a linewidth of 139.9 MHz, measured by Fabry-Perot interferometer. The single-frequency laser's single-peak power was over 19.7 W with 98.8-ns pulse duration, obtained under an absorption power of 1.74 W.

Keywords

Acknowledgement

This study was supported by a grant from the National Natural Science Foundation of China (Grant No. 61505012).

References

  1. C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, "Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet visible NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer," Opt. Express 25, 26885-26897 (2017). https://doi.org/10.1364/OE.25.026885
  2. L. T. Kerr, H. J. Byrne, and B. M. Hennelly, "Optimal choice of sample substrate and laser wavelength for Raman spectroscopic analysis of biological specimen," Anal. Methods 7, 5041-5052 (2015). https://doi.org/10.1039/C5AY00327J
  3. J. Cai, C. Lv, and A. Watanabe, "Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment," J. Mater. Chem. A 4, 1671-1679 (2016). https://doi.org/10.1039/C5TA09450J
  4. A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wohrer, and B. Baumann, "Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging," J. Biomed. Opt. 24, 066010 (2019).
  5. J. Zhou and B. Li, "Origins of a damage-induced green photoluminescence band in fused silica revealed by time-resolved photoluminescence spectroscopy," Opt. Mater. Express 7, 2888-2898 (2017). https://doi.org/10.1364/OME.7.002888
  6. H. Yin, Z. Wu, N. Shi, Y. Qi, X. Jian, L. Zhou, Y. Tong, Z. Cheng, J. Zhao, and H. Mao, "Ultrafast multiplexed detection of SARS-CoV-2 RNA using a rapid droplet digital PCR system," Biosens. Bioelectron. 188, 113282 (2021). https://doi.org/10.1016/j.bios.2021.113282
  7. T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, "Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts," Opt. Express 25, 11157-11172 (2017). https://doi.org/10.1364/OE.25.011157
  8. A. D. Shutov, G. V. Petrov, D.-W. Wang, M. O. Scully, and V. V. Yakovlev, "Highly efficient tunable picosecond deep ultraviolet laser system for Raman spectroscopy," Opt. Lett. 44, 5760-5763 (2019). https://doi.org/10.1364/ol.44.005760
  9. S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, "Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9nm," Opt. Commun. 380, 357-360 (2016). https://doi.org/10.1016/j.optcom.2016.06.026
  10. L. Jin, Y. Jin, Y. Dong, Q. Li, Y. Yu, S. Li, and G. Jin, "The three-wavelength PR3+:YLF laser at 604 nm 607 nm and 640 nm with Fabry-Perot etalon," Curr. Opt. Photon. 2, 448-452 (2018). https://doi.org/10.3807/COPP.2018.2.5.448
  11. S. Luo, Z. Cai, H. Xu, Z. Shen, H. Chen, L. Lia, and Y. Cao, "Direct oscillation at 640 nm in single longitudinal mode with a diode-pumped Pr:YLF solid-state laser," Opt. Laser Technol. 116, 112-116 (2019). https://doi.org/10.1016/j.optlastec.2019.03.025
  12. D. Wei, P. Shuang-Shuang, N. Na, Q. Da-Peng, M. Xiang-Jun, Z. Ling, and Z. Quan, "Combined dual-wavelength laser diode beam end-pumped single longitudinal mode PR3+:LiYF4 360 nm ultraviolet laser," Acta Phys. Sin. 68, 054202 (2019). https://doi.org/10.7498/aps.68.20182018
  13. Y. C. Chen, S. Li, K. K. Lee, and S. Zhou, "Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr,Nd:YAG laser," Opt. Lett. 18, 1418-1419 (1993). https://doi.org/10.1364/OL.18.001418
  14. B. Yin, Z. Liu, S. Feng, Y. Bai, H. Li, and S. Jian, "Stable single-polarization single-longitudinal-mode linear cavity erbium-doped fiber laser based on structured chirped fiber Bragg grating," Appl. Opt. 54, 6-11 (2015). https://doi.org/10.1364/AO.54.000006
  15. H. Ahmad, N. S. Azhari, M. Z. Zulkifli, F. D. Muhammad, and S. W. Harun, "S-band SLM distributed Bragg reflector fiber laser," Laser Phys. 24, 065109 (2014). https://doi.org/10.1088/1054-660X/24/6/065109
  16. B. Zhou, H. Jiang, R. Wang, and C. Lu, "Optical fiber fiber Fabry-Perot filter with tunable cavity for high-precision resonance wavelength adjustment," J. Light. Technol. 33, 2950-2954 (2015). https://doi.org/10.1109/JLT.2015.2426193
  17. C. T. Wu, Y. L. Ju, R. L. Zhou, X. M. Duan, and Y. Z. Wang, "Achieving single-longitudinal-mode output about Tm:YAG laser at room temperature," Laser Phys. 21, 372-375 (2011). https://doi.org/10.1134/S1054660X11030212
  18. T. Dai, J. Wu, Z. Zhang, Y. Ju, B. Yao,Y. Wang, "Diode-endpumped single-longitudinal-mode Er:LuAG laser with intracavity etalons at 1.6 μm," Appl. Opt. 54, 9500-9503 (2015). https://doi.org/10.1364/AO.54.009500
  19. Q. Wang, C. Gao, Q. Na, M. Gao, Y. Zhang, and Y. Li, "Single-frequency injection-seeded Q-switched Ho:YAG laser," in CLEO: Science and Innovations (Optical Society of America, 2016), paper STu4M.7
  20. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, and L. A. Rahn, "Gain switching of a monolithic single-frequency laser-diode-excited Nd:YAG laser," Opt. Lett. 10, 484-486 (1985). https://doi.org/10.1364/OL.10.000484
  21. G. W. Baxter, P. Schlup, and I. T. Mckinnie, "Efficient, single frequency, high repetition rate, PPLN OPO pumped by a prelase Q-switched diode-pumped Nd:YAG laser," Appl. Phys. B 70, 301-304 (2000). https://doi.org/10.1007/s003400050049
  22. B. Resan and E. Coadou, "Ultrashort seed-pulse generating laser with integral pulse shaping," US Patent 7894493B2 (2011).
  23. W. R. Sooy, "The natural selection of modes in a passive Q-switched laser," Appl. Phys. Lett. 7, 36-37 (1965). https://doi.org/10.1063/1.1754286
  24. S. Dai, F. Shi, J. Huang, J. Deng, H. Zheng, H. Liu, H. Wu, W. Weng, Y. Ge, J. Li, and W. Lin, "High-repetition-rate single-frequency electro-optic Q-switched Nd:YAG laser with feedback controlled prelase," in Proc. SPIE 9671, 967106 (2015). https://doi.org/10.1117/12.2197169
  25. R. A. Lamb, "Single-longitudinal-mode, phase-conjugate ring master oscillator power amplifier using external stimulated-Brillouin-scattering Q switching," J. Opt. Soc. Am. B 13, 1758-1765 (1996). https://doi.org/10.1364/JOSAB.13.001758
  26. Z. Huang, H. Deng, C. Yang, Q. Zhao, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, M. Peng, and S. Xu, "Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978 nm," Opt. Express 25, 1535-1541 (2017). https://doi.org/10.1364/OE.25.001535
  27. J. Wu, Y. Ju, T. Dai, B. Yao, and Y. Wang, "1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect," Opt. Express 25, 27671-27677 (2017). https://doi.org/10.1364/OE.25.027671
  28. Y. Liu, M. Zhang, J. Zhang, and Y. Wang, "Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator," J. Light. Technol. 35, 1744-1749 (2017). https://doi.org/10.1109/JLT.2017.2664071
  29. Q.-S. Li, Y. Dong, Y. Liu, X.-H. Zhang, Y-.J. Yu, and G.-Y. Jin, "Effect of cavity length on low-energy single longitudinal mode pre-lase Q-switched laser," Opt. Laser Technol. 94, 165-170 (2017). https://doi.org/10.1016/j.optlastec.2017.03.033