플라즈마 정보인자 기반 가상계측을 통한 Si 식각률의 첫 장 효과 분석

Analysis of First Wafer Effect for Si Etch Rate with Plasma Information Based Virtual Metrology

  • 유상원 (서울대학교 공과대학 에너지시스템공학부) ;
  • 권지원 (서울대학교 공과대학 에너지시스템공학부)
  • Ryu, Sangwon (Department of Energy Systems Engineering, Seoul National University) ;
  • Kwon, Ji-Won (Department of Energy Systems Engineering, Seoul National University)
  • 투고 : 2021.12.03
  • 심사 : 2021.12.13
  • 발행 : 2021.12.31

초록

Plasma information based virtual metrology (PI-VM) that predicts wafer-to-wafer etch rate variation after wet cleaning of plasma facing parts was developed. As input parameters, plasma information (PI) variables such as electron temperature, fluorine density and hydrogen density were extracted from optical emission spectroscopy (OES) data for etch plasma. The PI-VM model was trained by stepwise variable selection method and multi-linear regression method. The expected etch rate by PI-VM showed high correlation coefficient with measured etch rate from SEM image analysis. The PI-VM model revealed that the root cause of etch rate variation after the wet cleaning was desorption of hydrogen from the cleaned parts as hydrogen combined with fluorine and decreased etchant density and etch rate.

키워드

과제정보

본 연구는 산업통상자원부(20006471, 20006499, 20006534)와 KSRC 지원 사업인 미래반도체소자 원천기술개발사업의 연구결과로 수행되었으며, Brain Korea 21 Four Program(No.4199990314119)와 2020년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 2020년도 미래선도형 융합연구단 사업(No. CRC-20-01-NFRI)의 지원을 받아 수행된 연구임.

참고문헌

  1. Fukasawa, M. et al., "Prediction of Fluctuations in Plasma-Wall Interactions Using an Equipment Engineering System", Jpn. J. Appl. Phys., Vol. 48, p. 08HC01, 2009.
  2. Pan, C. R. et al., "Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges", IEEE Trans. Autom. Sci. Eng., Vol. 15, pp. 586-601, 2018. https://doi.org/10.1109/tase.2016.2642997
  3. Jang, Y. et al., "Role of Features in Plasma Information Based Virtual Metrology (PI-VM) for SiO2 Etching Depth", Journal of KSDT, Vol. 18, No. 4, pp. 30-34, 2019.
  4. Lynn, S. et al., "Virtual Metrology for Plasma Etch Using Tool variables," in IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 143-148, 2009.
  5. Khan, A. A. et al., "An approach for factory-wide control utilizing virtual metrology", IEDD Trans. Semicond. Manuf. Vol. 20, pp. 364-375, 2007. https://doi.org/10.1109/TSM.2007.907609
  6. Park, S. et al., "Enhancement of the Virtual Metrology Performances for Plasma-Assisted Oxide Etching Processes by Using Plasma Information (PI) Parameters", IEEE Trans. on Semicond. Manuf. Vol. 28, pp. 241-246, 2015. https://doi.org/10.1109/TSM.2015.2432576
  7. Roh, H.-J. et al., "Development of the Virtual Metrology for the Nitride Thickness in Multi-Layer Plasma Enhanced Chemical Vapor Deposition Using Plasma Information Variables", IEEE. Trans. on Semicond. Manuf. Vol. 31, No. 2, pp. 232-241, 2018. https://doi.org/10.1109/tsm.2018.2824314
  8. Jang, Y. et al., "Characteristics of a plasma information variable in phenomenology-based, statistically-tuned virtual metrology to predict silicon dioxide etching depth", Curr. Appl. Phys. Vol. 19, pp. 1068-1075, 2019. https://doi.org/10.1016/j.cap.2019.06.001
  9. Fants, U., "Basics of plasma spectroscopy" Plasma Sources Sci. Technol., Vol. 15, S137-147, 2006. https://doi.org/10.1088/0963-0252/15/4/S01
  10. Park, S. et al., "Characteristics of a Non-Maxwellian Electron Energy Distribution in a Low-pressure Argon Plasma", J. Kor. Phys. Soc., Vol. 64, No. 12, pp. 1819-1827, 2014. https://doi.org/10.3938/jkps.64.1819
  11. Lopaev, D. V. et al., "Actinometry of O, N and F atoms" J. Phys. D: Appl. Phys. Vol. 50, 075202, 2017. https://doi.org/10.1088/0022-3727/50/7/075202
  12. Skoro N. et al., "Characterization and global modelling of low-pressure hydrogen-based RF plasmas suitable for surface cleaning processes" J. Phys. D: Appl. Phys. Vol. 46, 475206, 2013. https://doi.org/10.1088/0022-3727/46/47/475206