DOI QR코드

DOI QR Code

수소 플라즈마 처리를 이용한 구리-구리 저온 본딩

H2 Plasma Pre-treatment for Low Temperature Cu-Cu Bonding

  • 최동훈 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 한승은 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 추혁진 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김인주 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과)
  • Choi, Donghoon (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology) ;
  • Han, Seungeun (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology) ;
  • Chu, Hyeok-Jin (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology) ;
  • Kim, Injoo (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology) ;
  • Kim, Sungdong (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology)
  • 투고 : 2021.12.20
  • 심사 : 2021.12.30
  • 발행 : 2021.12.30

초록

상압 수소 플라즈마 전처리가 구리-구리 직접 본딩에 미치는 영향에 대해서 조사하였다. 상압 수소 플라즈마 처리를 통해 구리 박막의 표면 산화층을 환원시킬 수 있었음을 GIXRD 분석을 통해 확인하였다. 플라즈마 파워가 크고 플라즈마 처리 시간이 길수록 환원력 및 표면 거칠기 관점에서 효과적이었다. DCB를 이용한 계면 결합 에너지 측정에서 상압 수소 플라즈마 전처리 후 300℃에서 본딩한 경우 양호한 계면 결합 에너지를 나타내었으나, 본딩 온도가 낮아질수록 계면 결합 에너지가 낮아져 200℃에서는 본딩이 이루어지지 않았다. 습식 전처리의 경우 250℃ 이상에서 본딩한 경우 강한 결합력을 보였으며, 200℃에서는 낮은 계면 결합 에너지를 나타내었다.

We investigated the effects of atmospheric hydrogen plasma treatment on Cu-Cu direct bonding. Hydrogen plasma was effective in reducing the surface oxide layer of Cu thin film, which was confirmed by GIXRD analysis. It was observed that larger plasma input power and longer treatment time were effective in terms of reduction and surface roughness. The interfacial adhesion energy was measured by DCB test and it was observed to decrease as the bonding temperature decreased, resulting in bonding failure at bonding temperature of 200℃. In case of wet treatment, strong Cu-Cu bonding was observed above bonding temperature of 250℃.

키워드

과제정보

이 연구는 서울과학기술대학교 교내연구비의 지원으로 수행되었습니다.

참고문헌

  1. T. Manouras, and A. Panagiotis, "High sensitivity resists for EUV lithography: A review of material design strategies and performance results." Nanomaterials 10(8) 1593 (2020). https://doi.org/10.3390/nano10081593
  2. R. K. Maurya, and B. Brinda, "Review of FinFET Devices and Perspective on Circuit Design Challenges." Silicon 1 (2021).
  3. F. Andrieu, P. Batude, L. Brunet, C. Fenouillet-Beranger, D. Lattard, S. Thuries, O. Billoint, R. Fournel, and M. Vinet, "A review on opportunities brought by 3D-monolithic integration for CMOS device and digital circuit." 2018 International Conference on IC Design & Technology (ICICDT), 141 (2018).
  4. J. H. Lau, "3D IC heterogeneous integration by FOWLP." in Fan-Out Wafer-Level Packaging, pp. 269-303 Springer (2018).
  5. S. S. Iyer, "Heterogeneous integration for performance and scaling." IEEE Transactions on Components, Packaging and Manufacturing Technology 6(7) 973 (2016). https://doi.org/10.1109/TCPMT.2015.2511626
  6. X. Zhang, J. K. Lin, S. Wickramanayaka, S. Zhang, R. Weerasekera, R. Dutta, K. F. Chang, K. Chui, H. Y. Li, D. S. W. Ho, L. Ding, G. Katti, S. Bhattacharya, and D. Kwong. "Heterogeneous 2.5 D integration on through silicon interposer." Applied Physics Reviews 2(2) 021308 (2015). https://doi.org/10.1063/1.4921463
  7. G. Kim, J. Lee, S. Park, S. Kang, T. Kim, Y. Park, "Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications", J. Microelectron. Packag. Soc., 25(2) 41 (2018). https://doi.org/10.6117/KMEPS.2018.25.2.041
  8. R. Mahajan, R. Sankman, N. Patel, D. Kim, K. Aygun, Z. Qian, Y. Mekonnen, I. Salama, S. Sharan, D. Iyengar, D. Mallik, "Embedded Multi-die Interconnect Bridge (EMIB) - A High Density, High Bandwidth Packaging Interconnect," 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 557 (2016).
  9. S. E. Kim, and S. D. Kim, "Wafer level Cu-Cu direct bonding for 3D integration", Microelectronic Engineering, 137, 158 (2015). https://doi.org/10.1016/j.mee.2014.12.012
  10. D. Liu, P. Chen, C. Hsiung, S. Huang, Y. Huang, S. Verhaverbeke, G. Mori and K. Chen, "Low Temperature Cu/SiO2 Hybrid Bonding with Metal Passivation" 2020 IEEE Symposium on VLSI Technology, 1 (2020).
  11. X. Shi, J. Wang, Q. Wang, H. He, S. Wang, H. Li, M. Sun, and J. Cai, "A Cu-Sn/BCB Hybrid Bonding with Embedded Bump Structure," 21st International Conference on Electronic Packaging Technology (ICEPT), 1 (2020).
  12. C. Lu, S. Jhu, C. Chen, B. Tsai and K. Chen, "Asymmetric Wafer-Level Polyimide and Cu/Sn Hybrid Bonding for 3-D Heterogeneous Integration," IEEE Transactions on Electron Devices, 66(7) 3073 (2019). https://doi.org/10.1109/ted.2019.2915332
  13. J. Lee, D. Jung, and J. Jung, "Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging", J. Microelectron. Packag. Soc., 25(4) 9 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.009
  14. K. Uchida, K. Tsumura, K. Nakamura, K. Higashi, Y. Sugizaki and H. Shibata, "Novel Bonding Process Using Ultrathin Mn for Highly Robust and Reliable Cu/SiO Hybrid Bonding," IEEE International Interconnect Technology Conference (IITC), 182 (2018).
  15. R. He and T. Suga, "Effects of Ar plasma and Ar fast atom bombardment (FAB) treatments on Cu/polymer hybrid surface for wafer bonding," 2014 International Conference on Electronics Packaging (ICEP), 78 (2014).
  16. L. Wang, G. Fountain, B. Lee, G. Gao, C. Uzoh, S. McGrath, P. Enquist, S. Arkalgud, and L. Mirkarimi, "Direct Bond Interconnect (DBI®) for fine-pitch bonding in 3D and 2.5D integrated circuits," 2017 Pan Pacific Microelectronics Symposium, 1 (2017).
  17. S. D. Kim, Y. Nam, and S. E. Kim, "Effects of forming gas plasma treatment on low-temperature Cu-Cu direct bonding", Japanese Journal of Applied Physics 55, 06JC02 (2016). https://doi.org/10.7567/JJAP.55.06JC02
  18. L. De Los Santos Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. A. Aguiar, and Y. Majima, "Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates", Thin Solid Films 520, 6368 (2012). https://doi.org/10.1016/j.tsf.2012.06.043
  19. H. Inui, K. Takeda, H. Kondo, and K. Ishikawa, "Measurement of Hydrogen Radical Density and Its Impact on Reduction of Copper Oxide in Atmospheric-Pressure Remote Plasma Using H2 and Ar Mixture Gases" Appl. Phys. Express 3, 126101 (2010). https://doi.org/10.1143/APEX.3.126101
  20. P. Enquist, "Direct Bond Interconnect for Advanced Packaging Applications", TFUG Proceedings (2007).
  21. H. Mehrer, "Ch. 8. Dependence of Diffusion on Temperature and Pressure", in Diffusion in Solids, pp.127 Springer (2007).