DOI QR코드

DOI QR Code

Efficient programmable power-of-two scaler for the three-moduli set {2n+p, 2n - 1, 2n+1 - 1}

  • 투고 : 2018.07.28
  • 심사 : 2019.12.03
  • 발행 : 2020.08.18

초록

Scaling is an important operation because of the iterative nature of arithmetic processes in digital signal processors (DSPs). In residue number system (RNS)-based DSPs, scaling represents a performance bottleneck based on the complexity of intermodulo operations. To design an efficient RNS scaler for special moduli sets, a body of literature has been dedicated to the study of the well-known moduli sets {2n - 1, 2n, 2n + 1} and {2n, 2n - 1, 2n+1 - 1}, and their extension in vertical or horizontal forms. In this study, we propose an efficient programmable RNS scaler for the arithmetic-friendly moduli set {2n+p, 2n - 1, 2n+1 - 1}. The proposed algorithm yields high speed and energy-efficient realization of an RNS programmable scaler based on the effective exploitation of the mixed-radix representation, parallelism, and a hardware sharing technique. Experimental results obtained for a 130 nm CMOS ASIC technology demonstrate the superiority of the proposed programmable scaler compared to the only available and highly effective hybrid programmable scaler for an identical moduli set. The proposed scaler provides 43.28% less power consumption, 33.27% faster execution, and 28.55% more area saving on average compared to the hybrid programmable scaler.

키워드

과제정보

The authors would like to thank Dr. B. Yoberd for his literature contributions.

참고문헌

  1. C. -H. Chang et al., Residue number systems: A new paradigm to datapath optimization for low-power and high-performance digital signal processing applications, IEEE Circ. Syst. Mag. 15 (2015), no. 4, 26-44. https://doi.org/10.1109/MCAS.2015.2484118
  2. G. L. Bernocchi et al., Low-power adaptive filter based on RNS components, in Proc. IEEE Int. Symp. Circuits Syst. (New Orleans, LA, USA), May (2007), pp. 3211-3214.
  3. J. Y. S. Low, T. F. Tay, and C.-H. Chang, A unified ${2^n-1,\;2^n,\;2^n+1}$ RNS scaler with dual scaling constants, in Proc. IEEE Asia Pacific Conf. Circuits Syst. (Kaohsiung, Taiwan), Dec. 2012, pp. 296-299.
  4. C. -H. Chang and J. Y. S. Low, Simple, fast, and exact RNS scaler for the three-moduli set ${2^n-1,\;2^n,\;2^n+1}$, IEEE Trans. Circuits Syst. I 58 (2011), no. 11, 2686-2697. https://doi.org/10.1109/TCSI.2011.2142950
  5. L. Sousa, $2^n$ RNS scalers for extended 4-moduli sets, IEEE Trans. Comput. 64 (2015), no. 12, 3322-3334. https://doi.org/10.1109/TC.2015.2401026
  6. Z. D. Ulman and M. Czyzak, Highly parallel, fast scaling of numbers in nonredundant residue arithmetic, IEEE Trans. Signal Process. 46 (1998), no. 2, 487-496. https://doi.org/10.1109/78.655432
  7. Z. Ulman, M. Czyzak, and J. Zurada, Effective RNS scaling algorithm with the Chinese remainder theorem decomposition, in Proc. IEEE Pacific Rim Conf. Commun. Comput. Signal Process. (Victoria, Canada), May 1993, pp. 528-531.
  8. M. Griffin, F. Taylor, and M. Sousa, New scaling algorithms for the Chinese remainder theorem, in Proc. Twenty-Second Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), 1988, pp. 375-378.
  9. M. Griffin, M. Sousa, and F. Taylor, Efficient scaling in the residue number system, in Proc. Int. Conf. Acoustics, Speech, Signal Process. (Glasgow, UK), May 1989, pp. 1075-1078.
  10. M. A. P. Shenoy and R. Kumaresan, A fast and accurate RNS scaling technique for high speed signal processing, IEEE Trans. Signal Process. 37 (1989), no. 6, 929-937. https://doi.org/10.1109/ASSP.1989.28063
  11. Y. Kong and B. Phillips, Fast scaling in the residue number system, IEEE Trans. VLSI Syst. 17 (2009), no. 3, 443-447. https://doi.org/10.1109/TVLSI.2008.2004550
  12. F. Barsi and M. C. Pinotti, Fast base extension and precise scaling in RNS for look-up table implementations, IEEE Trans. Signal process. 43 (1995), no. 10, 2427-2430. https://doi.org/10.1109/78.469842
  13. M. Dasygenis et al,, A full-adder-based methodology for the design of scaling operation in residue number system, IEEE Trans. Circuits Syst. I 55 (2008), no. 2, 546-558. https://doi.org/10.1109/TCSI.2007.913608
  14. S. Ma et al., A $2^n$ scaling scheme for signed RNS integers and its VLSI implementation, Sci. China Inf. Sci. 53 (2010), no. 1, 203-212. https://doi.org/10.1007/s11432-010-0015-y
  15. A. García and A. Lloris, A look-up scheme for scaling in the RNS, IEEE Trans. Comput. 48 (1999), no. 7, 748-751. https://doi.org/10.1109/12.780883
  16. A. Garcia and A. Lloris, RNS scaling based on pipelined multipliers for prime moduli, in Proc. IEEE Workshop Signal Process. Syst. SIPS Design Implementation (Cambridge, MA, USA), Oct. 1998, pp. 459-468.
  17. N. Burgess, Scaling an RNS number using the core function, in Proc. IEEE Symp. Comput. Arithmetic (Santiago de Compostela, Spain), June 2003, pp. 262-269.
  18. T. F. Tay, C.-H. Chang, and J. Y. S. Low, Efficient VLSI implementation of $2^n$ scaling of signed integer in RNS ${2^n-1,\;2^n,\;2^n+1}$, IEEE Trans. VLSI Syst. 21 (2012), no. 10, 1936-1940.
  19. J. Y. S. Low and C.-H. Chang, A VLSI efficient programmable power- of-two scaler for ${2^n-1,\;2^n,\;2^n+1}$ RNS, IEEE Trans. Circuits Syst. I 59 (2012), no. 12, 2911-2919. https://doi.org/10.1109/TCSI.2012.2206491
  20. A. Hiasat, Efficient RNS scalers for the extended three-moduli set ${2^n-1,\;2^{n+p},\;2^n+1}$, IEEE Trans. Comput. 66 (2017), no. 7, 1253-1260. https://doi.org/10.1109/TC.2017.2652474
  21. W. Wang et al., A high-speed residue-to-binary converter for three-moduli $(2^k,\;2^{k-1},\;2^{k-1}-1)$ RNS and a scheme for its VLSI implementation, IEEE Trans. Circuits Syst. II 47 (2000), no. 12, 1576-1581. https://doi.org/10.1109/82.899659
  22. P. V. A. Mohan, RNS-to-binary converter for a new three-moduli set ${2^{n+1}-1,\;2^n,\;2^n-1}$, IEEE Trans. Circuits Syst. II 54 (2007), no. 9, 775-779. https://doi.org/10.1109/TCSII.2007.900844
  23. A. Hiasat, An efficient reverse converter for the three-moduli set $(2^{n+1}-1,\;2^n,\;2^n-1)$, IEEE Trans. Circuits Syst. II 64 (2016), no. 8, 962-966. https://doi.org/10.1109/TCSII.2016.2608335
  24. M. M. Latha, R. R. Rachh, and P. V. A. Mohan, RNS-to-binary converters for a three-moduli set ${2^{n-1}-1,\;2^n-1,\;2^{n+k}$, IETE J. Edu. 58 (2017), no. 1, 20-28. https://doi.org/10.1080/09747338.2017.1317040
  25. A. S. Molahosseini et al., Efficient MRC-based residue to binary converters for the new moduli sets ${2^{2n},\;2^n-1,\;2^{n+1}-1}$ and ${2^{2n},\;2^n-1,\;2^{n-1}-1}$, IEICE Trans. Inf. Syst. 92 (2009), no. 9, 1628-1638. https://doi.org/10.1587/transinf.e92.d.1628
  26. M. Xu, Z. Bian, and R. Yao, Fast sign detection algorithm for the RNS moduli set ${2^{n+1}-1,\;2^n-1,\;2^n}$, IEEE Trans. VLSI Syst. 23 (2014), no. 2, 379-383.
  27. V. Niras and Y. Kong, Fast sign-detection algorithm for residue number system moduli set ${2^n-1,\;2^n,\;2^{n+1}-1}$, IET Comput. Digital Tec. 10 (2016), no. 2, 54-58. https://doi.org/10.1049/iet-cdt.2015.0050
  28. S. Kumar and C.-H. Chang, A VLSI-efficient signed magnitude comparator for ${2^n-1,\;2^n,\;2^{n+1}-1}$ RNS, EE Int. Symp. Circuits Syst. (Montreal, Canada), May 2016, 1966-1969.
  29. P. Patronik and S. J. Piestrak, Hardware/software approach to designing low-power RNS-enhanced arithmetic units, IEEE Trans. Circuits Syst. I 64 (2017), no. 5, 1031-1039. https://doi.org/10.1109/TCSI.2017.2669108
  30. A. Hiasat, New residue number system scaler for the three-moduli set ${2^{n+1}-1,\;2^n,\;2^n-1}$, Computers 7 (2018), no. 3, 46. https://doi.org/10.3390/computers7030046
  31. A. Hiasat and L. Sousa, On the design of RNS inter-modulo processing units for the arithmetic-friendly moduli sets ${2^{n+k},\;2^n-1,\;2^{n+1}-1}$, Comput. J. 62 (2018), no. 2, 292-300.
  32. S. J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders, IEEE Trans. Comput. 43 (1994), no. 1, 68-77. https://doi.org/10.1109/12.250610
  33. H. T. Vergos and G. Dimitrakopoulos, On modulo $2^n+1$ adder design, IEEE Trans. Comput. 61 (2010), no. 2, 173-186. https://doi.org/10.1109/TC.2010.261
  34. A. E. Zarandi et al., Reverse converter design via parallel-prefix adders: Novel components, methodology, and implementations, IEEE Trans. VLSI Syst. 23 (2014), no. 2, 374-378.
  35. A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans. Comput. 42 (1993), no. 10, 1163-1170. https://doi.org/10.1109/12.257703
  36. L. Kalampoukas et al., High-speed parallel-prefix module $2^n-1$ adders, IEEE Trans. Comput. 49 (2000), no. 7, 673-680. https://doi.org/10.1109/12.863036
  37. H. T. Vergos, C. Efstathiou, and D. Nikolos, Diminished-one modulo $2^n+1$ adder design, IEEE Trans. Comput. 51 (2002), no. 12, 1389-1399. https://doi.org/10.1109/TC.2002.1146705
  38. R. Muralidharan and C.-H. Chang, Area-power efficient modulo $2^n-1$ and modulo $2^n+1$ multipliers for ${2^n-1,\;2^n,\;2^n+1} $ based RNS, IEEE Trans. Circuits Syst. I 59 (2012), no. 10, 2263-2274. https://doi.org/10.1109/TCSI.2012.2185334
  39. R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis, PhD Thesis, Swiss Federal Institute of Technology, Zurich, 1998.