DOI QR코드

DOI QR Code

Signal parameter estimation through hierarchical conjugate gradient least squares applied to tensor decomposition

  • Liu, Long (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Wang, Ling (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Xie, Jian (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Wang, Yuexian (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Zhang, Zhaolin (School of Electronics and Information, Northwestern Polytechnical University)
  • Received : 2019.07.15
  • Accepted : 2019.10.28
  • Published : 2020.12.14

Abstract

A hierarchical iterative algorithm for the canonical polyadic decomposition (CPD) of tensors is proposed by improving the traditional conjugate gradient least squares (CGLS) method. Methods based on algebraic operations are investigated with the objective of estimating the direction of arrival (DoA) and polarization parameters of signals impinging on an array with electromagnetic (EM) vector-sensors. The proposed algorithm adopts a hierarchical iterative strategy, which enables the algorithm to obtain a fast recovery for the highly collinear factor matrix. Moreover, considering the same accuracy threshold, the proposed algorithm can achieve faster convergence compared with the alternating least squares (ALS) algorithm wherein the highly collinear factor matrix is absent. The results reveal that the proposed algorithm can achieve better performance under the condition of fewer snapshots, compared with the ALS-based algorithm and the algorithm based on generalized eigenvalue decomposition (GEVD). Furthermore, with regard to an array with a small number of sensors, the observed advantage in estimating the DoA and polarization parameters of the signal is notable.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China under Grant Nos. 61771404 and 61601372.

References

  1. R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag. 34 (1986), no. 3, 276-280. https://doi.org/10.1109/TAP.1986.1143830
  2. R. Roy and T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoust., Speech, Signal Process. 37 (1989), no. 7, 984-995. https://doi.org/10.1109/29.32276
  3. G. H. Liu et al., Modified MUSIC algorithm for DOA estimation with Nystrom approximation, IEEE Sensors J. 16 (2016), no. 12, 4673-4674. https://doi.org/10.1109/JSEN.2016.2557488
  4. W. Suleiman, M. Pesavento, and A. M. Zoubir, Performance analysis of the decentralized eigendecomposition and ESPRIT algorithm, IEEE Trans. Signal Process. 64 (2016), no. 9, 2375-2386. https://doi.org/10.1109/TSP.2016.2523448
  5. S. Y. Liu et al., Hierarchical principle-based iterative parameter estimation algorithm for dual-frequency signals, Circuits Syst. Signal Process. 18 (2019), no. 7, 3251-3268.
  6. L. Xu and F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling, Circuits Syst. Signal Process. 36 (2017), no. 4, 1735-1753. https://doi.org/10.1007/s00034-016-0378-4
  7. L. Xu and F. Ding, Iterative parameter estimation for signal models based on measured data, Circuits Syst. Signal Process. 37 (2018), no. 7, 3046-3069. https://doi.org/10.1007/s00034-017-0705-4
  8. L. Xu, The parameter estimation algorithms based on the dynamical response measurement data, Adv. Mech. Eng. 9 (2017), no. 11, 1-12.
  9. X. R. Zhang et al., Adaptive tensorial beamformer based on electromagnetic vector-sensor arrays with coherent interferences, Multidim. Syst. Sign. Process. 26 (2015), no. 3, 803-821. https://doi.org/10.1007/s11045-014-0281-8
  10. L. N. Ribeiro, A. L. F. Almeida, and J. C. M. Mota, Tensor beam-forming for multilinear translation invariant arrays, in Proc. IEEE Int. Conf. Acoustics, Shanghai, China, 2016, pp. 2966-2970.
  11. L. Liu et al., Robust tensor beamforming for polarization sensitive arrays, Multidim. Syst. Sign. Process. 30 (2019), 727-748. https://doi.org/10.1007/s11045-018-0580-6
  12. I. Domanov and L. D. Lathauwer, Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm, Linear Algebra Appl. 513 (2017), 342-375. https://doi.org/10.1016/j.laa.2016.10.019
  13. L. Sorber, M. V. Barel, and L. D. Lathauwer, Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank (Lr, Lr, 1) terms, and a new generalization, SIAM J. Optim. Apr. 23 (2013), no. 2, 695-720. https://doi.org/10.1137/120868323
  14. I. Domanov and L. D. Lathauwer, Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition, SIAM J. Matrix Anal. Appl. 35 (2014), no. 3, 636-660. https://doi.org/10.1137/130916084
  15. I. Domanov and L. D. Lathauwer, On the uniqueness of the canonical polyadic decomposition of third-order tensors-part ii: Uniqueness of the overall decomposition, SIAM, J. Matrix Anal. Appl. 34 (2013), no. 3, 876-903. https://doi.org/10.1137/120877258
  16. A. Cichocki et al., Tensor decompositions for signal processing applications from two-way to multiway component analysis, IEEE Signal Process. Mag. 32 (2015), no. 2, 145-163. https://doi.org/10.1109/MSP.2013.2297439
  17. P. Comon and C. Jutten, Handbook of blind source separation: independent component analysis and separation, Academic Press 4 (2010).
  18. N. D. Sidiropoulos et al., Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal Process. 65 (2017), no. 13, 3551-3582. https://doi.org/10.1109/TSP.2017.2690524
  19. X. J. Guo et al., A candecomp/parafac perspective on uniqueness of DOA estimation using a vector sensor array, IEEE Trans. Signal Process. 59 (2011), no. 7, 3475-3481. https://doi.org/10.1109/TSP.2011.2131134
  20. F. Raimondi et al., Tensor decomposition exploiting diversity of propagation velocities: Application to localization of icequake events, Signal Process. 118 (2016), no. 4, 75-88. https://doi.org/10.1016/j.sigpro.2015.06.015
  21. D. V. D. Lima et al., Time-delay estimation via CPD-GEVD applied to tensor-based GNSS arrays with errors, in Proc. IEEE Int. Workshop Computat. Adv. Multi-Sens. Adaptive Process., Curacao, Netherlands, Dec. 2017, pp. 1-5.
  22. L. Wang and R. C. D. Lamare, Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming, IET Signal Process. 4 (2010), no. 6, 686-697. https://doi.org/10.1049/iet-spr.2009.0243
  23. C Jiang, H. Li, and M. Rangaswamy, On the conjugate gradient matched filter, IEEE Trans. Signal Process. 60 (2012), no. 5, 2660-2666. https://doi.org/10.1109/TSP.2012.2187200
  24. M. Zhang, A. Zhang, and Q. Yang, Robust adaptive beamforming based on conjugate gradient algorithms, IEEE Trans. Signal Process. 64 (2016), no. 22, 6046-6057. https://doi.org/10.1109/TSP.2016.2605075
  25. F. Ding, X. G. Liu, and J. Chu, Gradient-based and least-squaresbased iterative algorithms for Hammerstein systems using the hierarchical identification principle, IET Contr. Theory Appl. 7 (2013), no. 2, 176-184. https://doi.org/10.1049/iet-cta.2012.0313
  26. M. H. Li and X. M. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique, Signal Process. 147 (2018), 1-20. https://doi.org/10.1016/j.sigpro.2018.01.017
  27. J. Pan et al., A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems, Int. J. Contr. Autom. Syst. 15 (2017), no. 3, 1189-1197. https://doi.org/10.1007/s12555-016-0081-z
  28. F. Ding and X. H. Wang, Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems, Circuits Syst. Signal Process. 36 (2017), no. 4, 1393-1405. https://doi.org/10.1007/s00034-016-0367-7
  29. L. Xu et al., Hierarchical parameter estimation for the frequency response based on the dynamical window data, Int. J. Contr. Autom. Syst. 16 (2018), no. 3, 1756-1764. https://doi.org/10.1007/s12555-017-0482-7
  30. L. Xu, F. Ding, and Q. M. Zhu, Hierarchical Newton and least squares iterative estimation algorithm for dynamic systems by transfer functions based on the impulse responses, Int. J. Syst. Sci. 50 (2019), no. 1, 141-151. https://doi.org/10.1080/00207721.2018.1544303
  31. X. Zhang et al., State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle, IET Contr. Theory Appl. 12 (2018), no. 12, 1704-1713. https://doi.org/10.1049/iet-cta.2018.0156
  32. L. Xu and F. Ding, Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle, IET Signal Process. 11 (2017), no. 2, 228-237. https://doi.org/10.1049/iet-spr.2016.0220
  33. L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement, Signal Process. 120 (2016), 660-667. https://doi.org/10.1016/j.sigpro.2015.10.009

Cited by

  1. Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications vol.10, pp.4, 2020, https://doi.org/10.3390/foods10040802