DOI QR코드

DOI QR Code

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Taehoon (Department of Materials Science and Engineering, Seoul National University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2020.11.24
  • 심사 : 2020.11.30
  • 발행 : 2020.11.30

초록

Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

키워드

참고문헌

  1. J. Wang, S. Rathi, B. Singh, I. Lee, H.-I. Joh, and G.-H. Kim, "Alternating current dielectrophoresis optimization of Pt-decorated graphene oxide nanostructures for proficient hydrogen gas sensor", ACS Appl. Mater. Interfaces, Vol. 7, No. 25, pp. 13768-13775, 2015. https://doi.org/10.1021/acsami.5b01329
  2. G. Hussain, M. Ge, C. Zhao, and D. S. Silvester, "Fast responding hydrogen gas sensors using platinum nanoparticle modified microchannels and ionic liquids", Anal. Chim. Acta, Vol. 1072, pp. 35-45, 2019. https://doi.org/10.1016/j.aca.2019.04.042
  3. S. Shukla, S. Seal, L. Ludwig, and C. Parish, "Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor", Sens. Actuators B, Vol. 97, No. 2-3, pp. 256-265, 2004. https://doi.org/10.1016/j.snb.2003.08.025
  4. A. Adamyan, Z. Adamyan, V. Aroutiounian, A. Arakelyan, K. Touryan, and J. Turner, "Sol-gel derived thin-film semiconductor hydrogen gas sensor", Int. J. Hydrog. Energy, Vol. 32, No. 16, pp. 4101-4108, 2007. https://doi.org/10.1016/j.ijhydene.2007.03.043
  5. Y. Pak, S.-M. Kim, H. Jeong, C. G. Kang, J. S. Park, H. Song, R. Lee, N. Myoung, B. H. Lee, and S. Seo, "Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons", ACS Appl. Mater. Interfaces, Vol. 6, No. 15, pp. 13293-13298, 2014. https://doi.org/10.1021/am503105s
  6. Y. K. Kim, S.-H. Hwang, S. M. Jeong, K. Y. Son, and S. K. Lim, "Colorimetric hydrogen gas sensor based on PdO/metal oxides hybrid nanoparticles", Talanta, Vol. 188, pp. 356-364, 2018. https://doi.org/10.1016/j.talanta.2018.06.010
  7. C.-H. Wu, Z. Zhu, S.-Y. Huang, and R.-J. Wu, "Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors", J. Alloys Compd., Vol. 776, pp. 965-973, 2019. https://doi.org/10.1016/j.jallcom.2018.10.372
  8. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mat. Sci. Eng. B, Vol. 229, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
  9. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, and L. Lin, "A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides", Microchim. Acta, Vol. 185, No. 4, pp. 213(1)-213(16), 2018. https://doi.org/10.1007/s00604-018-2750-5
  10. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, and J.-H. Liu, "Metal oxide nanostructures and their gas sensing properties: a review", Sensors, Vol. 12, No. 3, pp. 2610-2631, 2012. https://doi.org/10.3390/s120302610
  11. D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: a review", Sens. Actuators B, Vol. 204, pp. 250-272, 2014. https://doi.org/10.1016/j.snb.2014.07.074
  12. Y. H. Kim, S. J. Kim, Y.-J. Kim, Y.-S. Shim, S. Y. Kim, B. H. Hong, and H. W. Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending", ACS Nano, Vol. 9, No. 10, pp. 10453-10460, 2015. https://doi.org/10.1021/acsnano.5b04680
  13. Y. H. Kim, J. S. Park, Y.-R. Choi, S. Y. Park, S. Y. Lee, W. Sohn, Y.-S. Shim, J.-H. Lee, C. R. Park, and Y. S. Choi, "Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels", J. Mater. Chem. A, Vol. 5, No. 36, pp. 19116-19125, 2017. https://doi.org/10.1039/C7TA05766K
  14. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature Vol. 457, No. 7230, pp. 706-710, 2009. https://doi.org/10.1038/nature07719
  15. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol., Vol. 5, No. 8, pp. 574-578, 2010. https://doi.org/10.1038/nnano.2010.132
  16. F. Schedin, A. K. Geim, S. V. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, No. 9, pp. 652-655, 2007. https://doi.org/10.1038/nmat1967
  17. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. C. Johnson, "Intrinsic response of graphene vapor sensors", Nano Lett., Vol. 9, No. 4, pp. 1472-1475, 2009. https://doi.org/10.1021/nl8033637
  18. G. Lu, L. E. Ocola, and J. Chen, "Gas detection using low-temperature reduced graphene oxide sheets", Appl. Phys. Lett., Vol. 94, No. 8, pp. 083111(1)-083111(3), 2009. https://doi.org/10.1063/1.3086896
  19. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, "Highly selective gas sensor arrays based on thermally reduced graphene oxide", Nanoscale, Vol. 5, No. 12, pp. 5426-5434, 2013. https://doi.org/10.1039/c3nr00747b
  20. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, "Hydrogen sensing using titania nanotubes", Sens. Actuators B, Vol. 93, No. 1-3, pp. 338-344, 2003. https://doi.org/10.1016/S0925-4005(03)00222-3
  21. G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, "Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements", Thin Solid Films, Vol. 496, No. 1, pp. 42-48, 2006. https://doi.org/10.1016/j.tsf.2005.08.190
  22. B. Wang, L. Zhu, Y. Yang, N. Xu, and G. Yang, The "Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen", J. Phys. Chem. C, Vol. 112, No. 17, pp. 6643-6647, 2008. https://doi.org/10.1021/jp8003147
  23. P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri, and N. Pinna, "Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide", Angew. Chem. Int. Ed., Vol. 51, No. 44, pp. 11053-11057, 2012. https://doi.org/10.1002/anie.201204373
  24. K. Anand, O. Singh, M. P. Singh, J. Kaur, and R. C. Singh, "Hydrogen sensor based on graphene/ZnO nanocomposite", Sens. Actuators B, Vol. 195, pp. 409-415, 2014. https://doi.org/10.1016/j.snb.2014.01.029
  25. Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, and J. Li, "Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor", Nanoscale, Vol. 7, No. 22, pp. 10078-10084, 2015. https://doi.org/10.1039/C5NR01924A
  26. D. Kathiravan, B.-R. Huang, and A. Saravanan, "Selfassembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors", ACS Appl. Mater. Interfaces, Vol. 9, No. 13, pp. 12604-12072, 2017.
  27. S. Y. Park, Y. Kim, T. Kim, T. H. Eom, S. Y. Kim, and H. W. Jang, "Chemoresistive materials for electronic nose:Progress, perspectives, and challenges", InfoMat, Vol. 1, No. 3, pp. 289-316, 2019. https://doi.org/10.1002/inf2.12029
  28. Y. Kim, T. Kim, J. Lee, Y. S. Choi, J. Moon, S. Y. Park, T. H. Lee, H. K. Park, S. A Lee, M. S. Kwon, H.-G. Byun, J.-H. Lee, M.-G. Lee, B. H. Hong,, and H. W. Jang, "Tailored Graphene Micropatterns by Wafer?Scale Direct Transfer for Flexible Chemical Sensor Platform", Adv. Mater., Vol. 32, pp. 2004827(1)-2004827(9), 2020.
  29. Z. Shao, W. Zhu, H. Wang, Q. Yang, S. Yang, X. Liu, and G. Wang, "Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance", J. Phys. Chem. C, Vol. 117, No. 27, pp. 14289-14294, 2013. https://doi.org/10.1021/jp402519u
  30. H. Zhang, M. Jin, Y. Xiong, B. Lim, and Y. Xia, "Shapecontrolled synthesis of Pd nanocrystals and their catalytic applications", Acc. Chem. Res., Vol. 46, No. 8, pp. 1783-1794, 2013. https://doi.org/10.1021/ar300209w
  31. X. Yan, P. Zhu, and J. Li, "Self-assembly and application of diphenylalanine-based nanostructures", Chem. Soc. Rev., Vol. 39, No. 6, pp. 1877-1890, 2010. https://doi.org/10.1039/b915765b
  32. Y. Sun and H. H. Wang, "High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles", Adv. Mater., Vol. 19, No. 19, pp. 2818-2823, 2007. https://doi.org/10.1002/adma.200602975
  33. S. Ju, J. M. Lee, Y. Jung, E. Lee, W. Lee, and S.-J. Kim, "Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles", Sens. Actuators B, Vol. 146, No. 1, pp. 122-128, 2010. https://doi.org/10.1016/j.snb.2010.01.055
  34. A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor", Nanoscale, Vol. 1, No. 3, pp. 382-386, 2009. https://doi.org/10.1039/b9nr00015a
  35. D. H. Shin, J. S. Lee, J. Jun, J. H. An, S. G. Kim, K. H. Cho, and J. Jang, "Flower-like palladium nanoclusters decorated graphene electrodes for ultrasensitive and flexible hydrogen gas sensing", Sci. Rep., Vol. 5, pp. 12294(1)-12294(11), 2015. https://doi.org/10.1038/srep12294
  36. X. Yu, Y. Huo, J. Yang, S. Chang, Y. Ma, and W. Huang, "Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol", Appl. Surf. Sci., Vol. 280, pp. 450-455, 2013. https://doi.org/10.1016/j.apsusc.2013.05.008
  37. B. S. Yeo and A. T. Bell, "Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen", J. Am. Chem. Soc., Vol. 133, No. 14, pp. 5587-5593, 2011. https://doi.org/10.1021/ja200559j
  38. Y. Kim, Y. S. Choi, S. Y. Park, T. Kim, S.-P. Hong, T. H. Lee, C. W. Moon, J.-H. Lee, D. Lee, and B. H. Hong, "Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen", Nanoscale, Vol. 11, No. 6, pp. 2966-2973, 2019. https://doi.org/10.1039/C8NR09076A