Acknowledgement
Dedicated to the honorable memory of my beloved mother, Kobra Ahmadi (1950-July 21, 2020).
References
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
- Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B-Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035.
- Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43, 954-959. https://doi.org/10.1016/j.physe.2010.11.024.
- Alibeigloo, A. (2011), "Free vibration analysis of nano-plate using three-dimensional theory of elasticity", Acta Mech., 222, 149-159. https://doi.org/10.1007/s00707-011-0518-7.
- Angub, M.C.M., Vergara, C.J.T, Husay, H.A.F., Salvador, A.A., Empizo, M.J.F., Kawano, K., Minami, Y., Shimizu, T., Sarukura, N. and Somintac, A.S. (2018), "Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for radiation detectors", J. Lumin., 203, 427-435. https://doi.org/10.1016/j.jlumin.2018.05.062.
- Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B, 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025.
- Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.
- Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B-Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
- Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41, 861-864. https://doi.org/10.1016/j.physe.2009.01.007.
- Babu, E.S., Rani, B.J., Ravi, G., Yuvakkumar, R., Guduru, R.K., Ravichandran, S., Ameen, F., Kim, S. and Jeon, H.W. (2018), "Vertically aligned Cu-ZnO nanorod arrays for water splitting applications", Mater. Lett., 222, 58-61. https://doi.org/10.1016/j.matlet.2018.03.187.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195. https://doi.org/10.1115/1.2777164.
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Method. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fract. Mech., 51, 295-315. https://doi.org/10.1016/0013-7944(94)00153-9.
- Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19, 345703. https://doi.org/10.1088/0957-4484/19/34/345703.
- Chang, T.P. (2012), "Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods", Comput. Mater. Sci., 54, 23-27. https://doi.org/10.1016/j.commatsci.2011.10.033.
- Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59, 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X.
- Chen, J.Y. and Sun, K.W. (2010), "Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells", Sol. Energ. Mat. Sol. C, 94, 930-934. https://doi.org/10.1016/j.solmat.2010.01.005.
- Chung, H.J. and Belytschko, T. (1998), "An error estimate in the EFG method", Comput. Mech., 21, 91-100. https://doi.org/10.1007/s004660050286.
- Cordes, L.W. and Moran, B. (1996), "Treatment of material discontinuity in the element-free Galerkin method", Comput. Method. Appl. M., 139, 75-89. https://doi.org/10.1016/S0045-7825(96)01080-8.
- Ebrahimi, F. and Barati, M.R. (2017), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stresses, 40, 548-563. https://doi.org/10.1080/01495739.2016.1254076.
- Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Braz. Soc. Mech. Sci., 39, 937-952. https://doi.org/10.1007/s40430-016-0551-5.
- Ebrahimi, F. and Barati, M.R. (2017), "Porosity-dependent vibration analysis of piezomagnetically actuated heterogeneous nanobeams", Mech. Syst. Signal. Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25, 350-359. https://doi.org/10.1080/15376494.2016.1255830.
- Ebrahimi, F. and Dabbagh, A. (2017), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4, 025003. https://doi.org/10.1088/2053-1591/aa55b5.
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24, 820-829. https://doi.org/10.1080/15376494.2016.1196786.
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 9561504(20 pages). https://doi.org/10.1155/2016/9561504.
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38, 1360-1386. https://doi.org/10.1080/01495739.2015.1073980.
- Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23, 1379-1397. https://doi.org/10.1080/15376494.2015.1091524.
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24, 125007. https://doi.org/10.1088/0964-1726/24/12/125007.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. Nonlocal continuum field theories. Springer Science & Business Media, 2002. https://doi.org/10.1007/b97697.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
- Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013.
- Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Method. Eng., 40, 1483-1504. https://doi.org/10.1002/(SICI)10970207(19970430)40:8%3C1483::AID-NME123%3E3.0.CO;2-6.
- Gayen, R.N. and Paul, R. (2018), "Phosphorous doping in vertically aligned ZnO nanorods grown by wet-chemical method", Nano-Struct. Nano-Obj., 13, 163-169. https://doi.org/10.1016/j.nanoso.2016.03.007.
- Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models". Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
- Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010.
- Gu, Y.T. and Liu, G.R. (2001), "A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analyses of thin plates", Comp. Model. Eng. Sci., 2, 463-476. http://dx.doi.org/10.3970/cmes.2001.002.463.
- Gurtin, M.E. and Murdoch, A.I. (1975) "A continuum theory of elastic material surfaces", Arch. Ration. Mech. An., 57, 291-323. https://doi.org/10.1007/BF00261375.
- Gurtin, M.E. and Murdoch, A.I. (1976), "Effect of surface stress on wave propagation in solids", J. Appl. Phys., 47, 4414-4421. https://doi.org/10.1063/1.322403.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.
- Hammed, N.A., Aziz, A.A., Usman, A.I. and Qaeed, M.A. (2019), "The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: Effect of ZnO buffer layer", Ultrason. Sonochem., 50, 172-181. https://doi.org/10.1016/j.ultsonch.2018.09.020.
- Huang, Z. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions", Int. J. Solids Struct., 49, 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020.
- Karami, B., Janghorban, M. and Tounsi A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", P. I. Mech. Eng. C-J Mec., 233, 287-301. https://doi.org/10.1177%2F0954406218756451. https://doi.org/10.1177%2F0954406218756451
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech. A-Solid., 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart. Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
- Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048.
- Khodabakhshi, P. and Reddy, J.N. (2015), "A unified integro-differential nonlocal model", Int. J. Eng. Sci., 95, 60-75. https://doi.org/10.1016/j.ijengsci.2015.06.006.
- Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E, 43, 387-397. https://doi.org/10.1016/j.physe.2010.08.022.
- Kiani, K. (2013), "Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories", Int. J. Mech. Sci., 68, 16-34. https://doi.org/10.1016/j.ijmecsci.2012.11.011.
- Kiani, K. (2014), "Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny", Compos. Struct., 116, 254-272. https://doi.org/10.1016/j.compstruct.2014.03.045.
- Kiani, K. (2014), "Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models", Acta Mech., 225, 3569-3589. https://doi.org/10.1007/s00707-014-1107-3.
- Kiani, K. (2015), "Nanomechanical sensors based on elastically supported double-walled carbon nanotubes", Appl. Math. Comput., 270, 216-241. https://doi.org/10.1016/j.amc.2015.07.114.
- Kiani, K. (2016), "Nonlocal-integro-differential modeling of vibration of elastically supported nanorods", Physica E, 83, 151-163. https://doi.org/10.1016/j.physe.2016.04.018.
- Kiani K. (2016), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model", Compos. Struct., 139, 151-166. https://doi.org/10.1016/j.compstruct.2015.11.059.
- Kiani, K. and Pakdaman, H. (2020), "Bilaterally nonlocal dynamics of layer-by-layer assembly of double-walled carbon nanotubes accounting for intertube rigorous van der Waals forces", Eur. J. Mech. A-Solid, 80, 103876. https://doi.org/10.1016/j.euromechsol.2019.103876.
- Kiani, K. and Roshan, M. (2019), "Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles", Int. J. Mech. Sci., 152, 576-595. https://doi.org/10.1016/j.ijmecsci.2018.12.040.
- Kiani, K. and Soltani, S. (2020), "Nonlocal longitudinal, flapwise, and chordwise vibrations of rotary doubly coaxial/non-coaxial nanobeams as nanomotors", Int. J. Mech. Sci., 168, 105291. https://doi.org/10.1016/j.ijmecsci.2019.105291.
- Krongauz, Y. and Belytschko, T. (1998), "EFG approximation with discontinuous derivatives", Int. J. Numer. Method. Eng., 41, 1215-1233. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7%3C1215::AID-NME330%3E3.0.CO;2-%23.
- Krysl, P. and Belytschko, T. (1995), "Analysis of thin plates by the element-free Galerkin method", Comput. Mech., 17, 26-35. https://doi.org/10.1007/BF00356476.
- Krysl, P. and Belytschko, T. (1996), "Analysis of thin shells by the element-free Galerkin method", Int. J. Solids Struct., 33, 3057-3080. https://doi.org/10.1016/0020-7683(95)00265-0.
- Kumar, S., Reddy, K.M., Kumar, A. and Devi, G.R. (2013), "Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application", Aerosp. Sci. Tech., 26, 185-191. https://doi.org/10.1016/j.ast.2012.04.002.
- Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bi-directional functionally graded non-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B-Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.
- Liu, G.R. and Chen, X.L. (2001), "A mesh-free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241, 839-855. https://doi.org/10.1006/jsvi.2000.3330.
- Liu, Y., Kang, Z.H., Chen, Z.H., Shafiq, I., Zapien, J.A., Bello, I., Zhang,W.J. and Lee, S.T. (2009), "Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations", Cryst. Growth. Des., 9, 3222-3227. https://doi.org/10.1021/cg801294x.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications (Vol. 5). Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-5301-4.
- Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of doublenanorod systems", Physica E, 43, 415-422. https://doi.org/10.1016/j.physe.2010.08.023.
- Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B-Eng., 42, 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021.
- Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.
- Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E, 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006.
- Norouzzadeh, A., Ansari, R. and Rouhi, H. (2017), "Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: An isogeometric approach", Appl. Phys. A, 123, 330. https://doi.org/10.1016/j.physe.2017.01.006.
- Pant, M., Singh, I.V. and Mishra, B.K. (2010), "Numerical simulation of thermo-elastic fracture problems using element free Galerkin method", Int. J. Mech. Sci., 52, 1745-1755. https://doi.org/10.1016/j.ijmecsci.2010.09.008.
- Radwan, A.F. (2019), "Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium", Int. J. Mech. Sci., 157-158, 320-335. https://doi.org/10.1016/j.ijmecsci.2019.04.031.
- Rajabi, K. and Hashemi, S.H. (2017), "Application of the generalized Hooke's law for viscoelastic materials (GHVMs) in nonlocal free damped vibration analysis of viscoelastic orthotropic nanoplates", Int. J. Mech. Sci., 124-125, 158-165. https://doi.org/10.1016/j.ijmecsci.2017.02.025.
- Sahmani, S. and Aghdam, M.M. (2017), "Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity", Int. J. Mech. Sci., 122, 129-142. https://doi.org/10.1016/j.ijmecsci.2017.01.009.
- Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC press. https://doi.org/10.1201/9781420092578.
- Shen, X., Wang, G. and Wexler, D. (2009), "Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays", Sensor. Actuat. B-Chem., 143, 325-332. https://doi.org/10.1016/j.snb.2009.09.015.
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.
- Sukumar, N., Moran, B., Black, T. and Belytschko, T. (1997), "An element-free Galerkin method for three-dimensional fracture mechanics", Comput. Mech., 20, 170-175. https://doi.org/10.1007/s004660050235.
- Sun, Y., Fuge, G.M. and Ashfold, M.N.R. (2004), "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods", Chem. Phys. Lett., 396, 21-26. https://doi.org/10.1016/j.cplett.2004.07.110.
- Thomas, T., Mathew, A. and Reshmi, R. (2018), "Vertically aligned a-MoO3 nanorods on commercial glass substrate by vacuum thermal evaporation", Mater. Lett., 227, 29-32. https://doi.org/10.1016/j.matlet.2018.04.126.
- Thongsuksai, W., Panomsuwan, G. and Rodchanarowan, A. (2018), "Fast and convenient growth of vertically aligned ZnO nanorods via microwave plasma-assisted thermal evaporation", Mater. Lett., 224, 50-53. https://doi.org/10.1016/j.matlet.2018.04.060.
- Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Proc. Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
- Wang, Y.Q., Liu, Y.F. and Yang, T.H. (2019), "Nonlinear thermo-electro-mechanical vibration of functionally graded piezoelectric nanoshells on winkler-pasternak foundations via nonlocal Donnell's nonlinear shell theory", Int. J. Struct. Stab. Dy., 19, 1950100. https://doi.org/10.1142/S0219455419501001.
- Wang, J.X., Sun, X.W., Yang, Y., Huang, H., Lee, Y.C., Tan, O.K. and Vayssieres, L. (2006), "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications", Nanotechnology, 17, 4995. https://doi.org/10.1088/0957-4484/17/19/037.
- Wang, X., Summers, C.J. and Wang, Z.L. (2004), "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays", Nano Lett., 4, 423-426. https://doi.org/10.1021/nl035102c.
- Yi, J., Lee, J.M. and Park, W.I. (2011), "Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors", Sensor. Actuat. B-Chem., 155, 264-269. https://doi.org/10.1016/j.snb.2010.12.033.
- Yuan, Y., Xu, K. and Kiani, K. (2020), "Torsional vibration of nonprismatically nonhomogeneous nanowires with multiple defects: Surface energy-nonlocal-integro-based formulations", Appl. Math. Model., 82, 17-44. https://doi.org/10.1016/j.apm.2020.01.030.
- Zhang, D.P., Lei, Y.J. and Shen, Z.B. (2017), "Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions", Int. J. Mech. Sci., 131-132, 1001-1015. https://doi.org/10.1016/j.ijmecsci.2017.08.031.
- Zhang, N., Xie, S., Weng, B. and Xu, Y.J. (2016), "Vertically aligned ZnO-Au CdS core-shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application", J. Mater. Chem. A, 4, 18804-18814. https://doi.org/10.1039/C6TA07845A.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.
Cited by
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073