DOI QR코드

DOI QR Code

Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods

  • Yuan, Yuan (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology) ;
  • Zhao, Ke (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology) ;
  • Zhao, Yafei (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology) ;
  • Kiani, Keivan (Department of Civil Engineering, K.N. Toosi University of Technology)
  • Received : 2019.09.06
  • Accepted : 2020.10.13
  • Published : 2020.12.10

Abstract

Vibration of vertically aligned-monolayered-nonuniform nanorods consist of functionally graded materials with elastic supports has not been investigated yet. To fill this gap, the problem is examined using the elasticity theories of Eringen and Gurtin-Murdoch. The geometrical and mechanical properties of the surface layer and the bulk are allowed to vary arbitrarily across the length. The nonlocal-surface energy-based governing equations are established using differential-type and integro-type formulations, and solved by employing the Galerkin method by exploiting admissible modes approach and element-free Galerkin (EFG). Through various comparison studies, the effectiveness of the EFG in capturing both nonlocal-differential/integro-based frequencies is proved. A constructive parametric study is also conducted, and the roles of nanorods' diameter, length, stiffness of both inter-rod's elastic layer and elastic supports, power-law index of both constituent materials and geometry, nonlocal and surface effects on the dominant frequencies are revealed.

Keywords

Acknowledgement

Dedicated to the honorable memory of my beloved mother, Kobra Ahmadi (1950-July 21, 2020).

References

  1. Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
  2. Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B-Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035.
  3. Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43, 954-959. https://doi.org/10.1016/j.physe.2010.11.024.
  4. Alibeigloo, A. (2011), "Free vibration analysis of nano-plate using three-dimensional theory of elasticity", Acta Mech., 222, 149-159. https://doi.org/10.1007/s00707-011-0518-7.
  5. Angub, M.C.M., Vergara, C.J.T, Husay, H.A.F., Salvador, A.A., Empizo, M.J.F., Kawano, K., Minami, Y., Shimizu, T., Sarukura, N. and Somintac, A.S. (2018), "Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for radiation detectors", J. Lumin., 203, 427-435. https://doi.org/10.1016/j.jlumin.2018.05.062.
  6. Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B, 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025.
  7. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.
  8. Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B-Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
  9. Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41, 861-864. https://doi.org/10.1016/j.physe.2009.01.007.
  10. Babu, E.S., Rani, B.J., Ravi, G., Yuvakkumar, R., Guduru, R.K., Ravichandran, S., Ameen, F., Kim, S. and Jeon, H.W. (2018), "Vertically aligned Cu-ZnO nanorod arrays for water splitting applications", Mater. Lett., 222, 58-61. https://doi.org/10.1016/j.matlet.2018.03.187.
  11. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195. https://doi.org/10.1115/1.2777164.
  12. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063.
  13. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Method. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205.
  14. Belytschko, T., Lu, Y.Y. and Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fract. Mech., 51, 295-315. https://doi.org/10.1016/0013-7944(94)00153-9.
  15. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  16. Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19, 345703. https://doi.org/10.1088/0957-4484/19/34/345703.
  17. Chang, T.P. (2012), "Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods", Comput. Mater. Sci., 54, 23-27. https://doi.org/10.1016/j.commatsci.2011.10.033.
  18. Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59, 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X.
  19. Chen, J.Y. and Sun, K.W. (2010), "Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells", Sol. Energ. Mat. Sol. C, 94, 930-934. https://doi.org/10.1016/j.solmat.2010.01.005.
  20. Chung, H.J. and Belytschko, T. (1998), "An error estimate in the EFG method", Comput. Mech., 21, 91-100. https://doi.org/10.1007/s004660050286.
  21. Cordes, L.W. and Moran, B. (1996), "Treatment of material discontinuity in the element-free Galerkin method", Comput. Method. Appl. M., 139, 75-89. https://doi.org/10.1016/S0045-7825(96)01080-8.
  22. Ebrahimi, F. and Barati, M.R. (2017), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stresses, 40, 548-563. https://doi.org/10.1080/01495739.2016.1254076.
  23. Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Braz. Soc. Mech. Sci., 39, 937-952. https://doi.org/10.1007/s40430-016-0551-5.
  24. Ebrahimi, F. and Barati, M.R. (2017), "Porosity-dependent vibration analysis of piezomagnetically actuated heterogeneous nanobeams", Mech. Syst. Signal. Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021.
  25. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25, 350-359. https://doi.org/10.1080/15376494.2016.1255830.
  26. Ebrahimi, F. and Dabbagh, A. (2017), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4, 025003. https://doi.org/10.1088/2053-1591/aa55b5.
  27. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24, 820-829. https://doi.org/10.1080/15376494.2016.1196786.
  28. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 9561504(20 pages). https://doi.org/10.1155/2016/9561504.
  29. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38, 1360-1386. https://doi.org/10.1080/01495739.2015.1073980.
  30. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23, 1379-1397. https://doi.org/10.1080/15376494.2015.1091524.
  31. Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24, 125007. https://doi.org/10.1088/0964-1726/24/12/125007.
  32. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  33. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  34. Eringen, A.C. Nonlocal continuum field theories. Springer Science & Business Media, 2002. https://doi.org/10.1007/b97697.
  35. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  36. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  37. Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013.
  38. Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Method. Eng., 40, 1483-1504. https://doi.org/10.1002/(SICI)10970207(19970430)40:8%3C1483::AID-NME123%3E3.0.CO;2-6.
  39. Gayen, R.N. and Paul, R. (2018), "Phosphorous doping in vertically aligned ZnO nanorods grown by wet-chemical method", Nano-Struct. Nano-Obj., 13, 163-169. https://doi.org/10.1016/j.nanoso.2016.03.007.
  40. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models". Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
  41. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010.
  42. Gu, Y.T. and Liu, G.R. (2001), "A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analyses of thin plates", Comp. Model. Eng. Sci., 2, 463-476. http://dx.doi.org/10.3970/cmes.2001.002.463.
  43. Gurtin, M.E. and Murdoch, A.I. (1975) "A continuum theory of elastic material surfaces", Arch. Ration. Mech. An., 57, 291-323. https://doi.org/10.1007/BF00261375.
  44. Gurtin, M.E. and Murdoch, A.I. (1976), "Effect of surface stress on wave propagation in solids", J. Appl. Phys., 47, 4414-4421. https://doi.org/10.1063/1.322403.
  45. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.
  46. Hammed, N.A., Aziz, A.A., Usman, A.I. and Qaeed, M.A. (2019), "The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: Effect of ZnO buffer layer", Ultrason. Sonochem., 50, 172-181. https://doi.org/10.1016/j.ultsonch.2018.09.020.
  47. Huang, Z. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions", Int. J. Solids Struct., 49, 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020.
  48. Karami, B., Janghorban, M. and Tounsi A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  49. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", P. I. Mech. Eng. C-J Mec., 233, 287-301. https://doi.org/10.1177%2F0954406218756451. https://doi.org/10.1177%2F0954406218756451
  50. Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech. A-Solid., 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
  51. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart. Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
  52. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048.
  53. Khodabakhshi, P. and Reddy, J.N. (2015), "A unified integro-differential nonlocal model", Int. J. Eng. Sci., 95, 60-75. https://doi.org/10.1016/j.ijengsci.2015.06.006.
  54. Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E, 43, 387-397. https://doi.org/10.1016/j.physe.2010.08.022.
  55. Kiani, K. (2013), "Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories", Int. J. Mech. Sci., 68, 16-34. https://doi.org/10.1016/j.ijmecsci.2012.11.011.
  56. Kiani, K. (2014), "Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny", Compos. Struct., 116, 254-272. https://doi.org/10.1016/j.compstruct.2014.03.045.
  57. Kiani, K. (2014), "Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models", Acta Mech., 225, 3569-3589. https://doi.org/10.1007/s00707-014-1107-3.
  58. Kiani, K. (2015), "Nanomechanical sensors based on elastically supported double-walled carbon nanotubes", Appl. Math. Comput., 270, 216-241. https://doi.org/10.1016/j.amc.2015.07.114.
  59. Kiani, K. (2016), "Nonlocal-integro-differential modeling of vibration of elastically supported nanorods", Physica E, 83, 151-163. https://doi.org/10.1016/j.physe.2016.04.018.
  60. Kiani K. (2016), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model", Compos. Struct., 139, 151-166. https://doi.org/10.1016/j.compstruct.2015.11.059.
  61. Kiani, K. and Pakdaman, H. (2020), "Bilaterally nonlocal dynamics of layer-by-layer assembly of double-walled carbon nanotubes accounting for intertube rigorous van der Waals forces", Eur. J. Mech. A-Solid, 80, 103876. https://doi.org/10.1016/j.euromechsol.2019.103876.
  62. Kiani, K. and Roshan, M. (2019), "Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles", Int. J. Mech. Sci., 152, 576-595. https://doi.org/10.1016/j.ijmecsci.2018.12.040.
  63. Kiani, K. and Soltani, S. (2020), "Nonlocal longitudinal, flapwise, and chordwise vibrations of rotary doubly coaxial/non-coaxial nanobeams as nanomotors", Int. J. Mech. Sci., 168, 105291. https://doi.org/10.1016/j.ijmecsci.2019.105291.
  64. Krongauz, Y. and Belytschko, T. (1998), "EFG approximation with discontinuous derivatives", Int. J. Numer. Method. Eng., 41, 1215-1233. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7%3C1215::AID-NME330%3E3.0.CO;2-%23.
  65. Krysl, P. and Belytschko, T. (1995), "Analysis of thin plates by the element-free Galerkin method", Comput. Mech., 17, 26-35. https://doi.org/10.1007/BF00356476.
  66. Krysl, P. and Belytschko, T. (1996), "Analysis of thin shells by the element-free Galerkin method", Int. J. Solids Struct., 33, 3057-3080. https://doi.org/10.1016/0020-7683(95)00265-0.
  67. Kumar, S., Reddy, K.M., Kumar, A. and Devi, G.R. (2013), "Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application", Aerosp. Sci. Tech., 26, 185-191. https://doi.org/10.1016/j.ast.2012.04.002.
  68. Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bi-directional functionally graded non-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B-Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.
  69. Liu, G.R. and Chen, X.L. (2001), "A mesh-free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241, 839-855. https://doi.org/10.1006/jsvi.2000.3330.
  70. Liu, Y., Kang, Z.H., Chen, Z.H., Shafiq, I., Zapien, J.A., Bello, I., Zhang,W.J. and Lee, S.T. (2009), "Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations", Cryst. Growth. Des., 9, 3222-3227. https://doi.org/10.1021/cg801294x.
  71. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications (Vol. 5). Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-5301-4.
  72. Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of doublenanorod systems", Physica E, 43, 415-422. https://doi.org/10.1016/j.physe.2010.08.023.
  73. Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B-Eng., 42, 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021.
  74. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.
  75. Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E, 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006.
  76. Norouzzadeh, A., Ansari, R. and Rouhi, H. (2017), "Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: An isogeometric approach", Appl. Phys. A, 123, 330. https://doi.org/10.1016/j.physe.2017.01.006.
  77. Pant, M., Singh, I.V. and Mishra, B.K. (2010), "Numerical simulation of thermo-elastic fracture problems using element free Galerkin method", Int. J. Mech. Sci., 52, 1745-1755. https://doi.org/10.1016/j.ijmecsci.2010.09.008.
  78. Radwan, A.F. (2019), "Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium", Int. J. Mech. Sci., 157-158, 320-335. https://doi.org/10.1016/j.ijmecsci.2019.04.031.
  79. Rajabi, K. and Hashemi, S.H. (2017), "Application of the generalized Hooke's law for viscoelastic materials (GHVMs) in nonlocal free damped vibration analysis of viscoelastic orthotropic nanoplates", Int. J. Mech. Sci., 124-125, 158-165. https://doi.org/10.1016/j.ijmecsci.2017.02.025.
  80. Sahmani, S. and Aghdam, M.M. (2017), "Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity", Int. J. Mech. Sci., 122, 129-142. https://doi.org/10.1016/j.ijmecsci.2017.01.009.
  81. Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC press. https://doi.org/10.1201/9781420092578.
  82. Shen, X., Wang, G. and Wexler, D. (2009), "Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays", Sensor. Actuat. B-Chem., 143, 325-332. https://doi.org/10.1016/j.snb.2009.09.015.
  83. Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.
  84. Sukumar, N., Moran, B., Black, T. and Belytschko, T. (1997), "An element-free Galerkin method for three-dimensional fracture mechanics", Comput. Mech., 20, 170-175. https://doi.org/10.1007/s004660050235.
  85. Sun, Y., Fuge, G.M. and Ashfold, M.N.R. (2004), "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods", Chem. Phys. Lett., 396, 21-26. https://doi.org/10.1016/j.cplett.2004.07.110.
  86. Thomas, T., Mathew, A. and Reshmi, R. (2018), "Vertically aligned a-MoO3 nanorods on commercial glass substrate by vacuum thermal evaporation", Mater. Lett., 227, 29-32. https://doi.org/10.1016/j.matlet.2018.04.126.
  87. Thongsuksai, W., Panomsuwan, G. and Rodchanarowan, A. (2018), "Fast and convenient growth of vertically aligned ZnO nanorods via microwave plasma-assisted thermal evaporation", Mater. Lett., 224, 50-53. https://doi.org/10.1016/j.matlet.2018.04.060.
  88. Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Proc. Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  89. Wang, Y.Q., Liu, Y.F. and Yang, T.H. (2019), "Nonlinear thermo-electro-mechanical vibration of functionally graded piezoelectric nanoshells on winkler-pasternak foundations via nonlocal Donnell's nonlinear shell theory", Int. J. Struct. Stab. Dy., 19, 1950100. https://doi.org/10.1142/S0219455419501001.
  90. Wang, J.X., Sun, X.W., Yang, Y., Huang, H., Lee, Y.C., Tan, O.K. and Vayssieres, L. (2006), "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications", Nanotechnology, 17, 4995. https://doi.org/10.1088/0957-4484/17/19/037.
  91. Wang, X., Summers, C.J. and Wang, Z.L. (2004), "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays", Nano Lett., 4, 423-426. https://doi.org/10.1021/nl035102c.
  92. Yi, J., Lee, J.M. and Park, W.I. (2011), "Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors", Sensor. Actuat. B-Chem., 155, 264-269. https://doi.org/10.1016/j.snb.2010.12.033.
  93. Yuan, Y., Xu, K. and Kiani, K. (2020), "Torsional vibration of nonprismatically nonhomogeneous nanowires with multiple defects: Surface energy-nonlocal-integro-based formulations", Appl. Math. Model., 82, 17-44. https://doi.org/10.1016/j.apm.2020.01.030.
  94. Zhang, D.P., Lei, Y.J. and Shen, Z.B. (2017), "Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions", Int. J. Mech. Sci., 131-132, 1001-1015. https://doi.org/10.1016/j.ijmecsci.2017.08.031.
  95. Zhang, N., Xie, S., Weng, B. and Xu, Y.J. (2016), "Vertically aligned ZnO-Au CdS core-shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application", J. Mater. Chem. A, 4, 18804-18814. https://doi.org/10.1039/C6TA07845A.
  96. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.

Cited by

  1. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073