DOI QR코드

DOI QR Code

Service Image Placement Mechanism Based on the Logical Fog Network

논리적 포그 네트워크 기반의 서비스 이미지 배치 기법

  • Received : 2020.09.16
  • Accepted : 2020.10.22
  • Published : 2020.11.30

Abstract

For the resolution of the latency problem of the cloud center-based cloud computing, fog computing was proposed that allows end devices to offload computations to nearby fog nodes. In the fog computing, virtualized service images are placed on fog nodes and, if service images are placed close to end devices, the duplicate service image placement problem may occur. Therefore, in this paper, we propose a service image placement mechanism based on the logical fog network that reduces duplicate service images by considering the pattern of collected service requests. For the performance evaluation of the proposed mechanism, through simulations, we compare ours with the on-demand mechanism placing a service image upon the receipt of a service request. We consider the performance factors like the number of service images, the number of non-accommodated service requests, and the network cost.

클라우드 센터 기반 클라우드 컴퓨팅 방식의 지연시간 문제를 해결하기 위해, 단말 장치에서 가까운 포그 노드에게 컴퓨테이션 오프로딩(Computation offloading)을 하는 포그 컴퓨팅 방식이 제안되었다. 포그 컴퓨팅에서는 포그 노드에 가상화된 서비스 이미지가 배치되며, 단말 장치와 가까운 포그 노드에 서비스 이미지를 배치하는 경우 동일한 서비스 이미지가 여러 포그 노드에 중복 배치되는 문제가 발생할 수 있다. 따라서 본 논문에서는 단말 장치로부터 수집된 서비스 요청 패턴을 고려해서 서비스 이미지의 중복 배치를 최소화하는 논리적 포그 네트워크 기반의 서비스 이미지 배치 기법을 제안한다. 제안 기법의 성능 평가를 위해 시뮬레이션을 통해 서비스 요청이 있을 때 동적으로 서비스 이미지를 할당하는 기법과 제안 기법의 성능을 비교하며, 성능 분석 요소로서 서비스 이미지 배치 수, 수용되지 못한 서비스 요청 수, 네트워크 비용을 고려한다.

Keywords

References

  1. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the internet of things," in Proceedings of Mobile Cloud Computing (MCC) Workshop, 2012.
  2. V. B. C. Souza, W. Ramirez, X. Masip-Bruin, E. MarinTordera, G. Ren, and G. Tashakor, "Handling service allocation in combined fog-cloud scenarios," in Proceedings of IEEE International Conference on Communications (ICC), 2016.
  3. A. Brogi and S. Forti, "QoS-aware deployment of IoT applications through the fog," IEEE Internet of Things Journal, 2017.
  4. J. Choi and S. Ahn, "Scalable service placement in the fog computing environment for the IoT-based smart city," Journal of Information Processing Systems, 2019.
  5. S. Yi, C. Li, and Q. Li, "A survey of fog computing: Concepts, applications and issues," in Proceedings of Mobile Big Data (Mobidata) Workshop, 2015.
  6. O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, "Resource provisioning for IoT services in the fog," in Proceedings of IEEE International Conference on Service Oriented Computing and Applications (SOCA), 2016.
  7. O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, "Towards QoS-aware fog service placement," in Proceedings of IEEE International Conference on Fog and Edge Computing (ICFEC), 2017.
  8. E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwalder, "Incremental deployment and migration of geodistributed situation awareness applications in the fog," in Proceedings of ACM International Conference on Distributed and Event-based Systems (DEBS), 2016.
  9. F. Faticanti, F. D. Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, "Cutting throughput with the edge: App-aware placement in fog computing," in IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), 2019.
  10. R. Yu, G. Xue, and X. Zhang, "Application Provisioning in fog Computing-enabled Internet of Things: A Network Perspective," in Proceedings of IEEE INFOCOM, 2018.
  11. V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, S. SanchezLopez, J. Garcia, G.-J. Ren, A. Jukan, A. Jukan, and A. J. Ferrer, "Towards a proper service placement in combined fog to cloud (F2C) architectures," Future Generation Computer Systems, 2018.
  12. 서울 열린데이터광장 [Internet], https://data.seoul.go.kr/