DOI QR코드

DOI QR Code

Isolation of New Strain of Cordyceps militaris HB8 and Optimal Condition for Production of Adenosine and Cordycepin in Fruit Body

  • Li, Jin Feng (Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Hoang, Van An (HanbangBio Inc. Kyung Hee University Holdings) ;
  • Ahn, Jong Chan (Graduate School of Biotechnology, Kyung Hee University) ;
  • Yang, Dong Uk (HanbangBio Inc. Kyung Hee University Holdings) ;
  • Lee, Dong Wook (HanbangBio Inc. Kyung Hee University Holdings) ;
  • Yang, Deok Chun (HanbangBio Inc. Kyung Hee University Holdings)
  • 투고 : 2020.11.03
  • 심사 : 2020.11.26
  • 발행 : 2020.12.01

초록

Cordyceps has been used in traditional Chinese medicine more than 2000 year ago. In this study, the new Cordyceps militaris was founded and isolated from O-dae mountain in Korea, and was identified its genetic characteristics. The newly isolation strain HB8 was most closet to Cordyceps militaris W141449 (99.82%), Cordyceps militaris JLCY-LI819 (99.82%) and Cordyceps militaris 4642 (99.81%), respectively. the genotypic result was show that train HB8 was belonging to the Cordyceps militaris genus, therefore, Cordycep militaris HB8 proposed with accession number MT835161. This study we find the optimal condition for production of cordycepin from Cordyceps militaris HB8 was 8 mg/g (200 g of pupa, 1 g of KH2PO4, 0.5 g of K2HPO4, 20 g of glucose, 1 g of MgSO4, 0.05 g of vitamin B1, and 1 mg of NAA per liter; light condition 300-700 Lux and day/night was 14 h/10 h) and the optimum condition for the production of adenosine was 2.6 mg/g (15 g of skim milk powder, 1 g of KH2PO4, 0.5 g of K2HPO4, 20 g of glucose, 1 g of MgSO4, 0.05 g of vitamin B1, and 1 mg of NAA per liter; light condition 300-700 Lux and day/night was 14 h/10 h).

키워드

참고문헌

  1. Ahn, H.Y., J.H. Lee, M.J. Kang, J.Y, Cha and Y.S. Cho. 2012. Fibrinolytic activity and chemical properties of cordycepinenriched Cordyceps militaris JLM 0636. J. Life Sci. 22(2):226-231 (in Korean). https://doi.org/10.5352/JLS.2012.22.2.226
  2. Cai, Z.L., C.Y. Wang, Z.J. Jiang, H.H. Li, W.X. Liu, L.W. Gong, P. Xiao and C.H. Li. 2013. Effects of cordycepin on Y-maze learning task in mice. Eur. J. Pharmacol. 714:249-253. https://doi.org/10.1016/j.ejphar.2013.05.049
  3. Cha, W.S., B.S. Cho and S.Y. Park. 2004. A study on the composition of Cordyceps militaris extract and mycelium. J. Life Sci. 14(5):727-731 (in Korean). https://doi.org/10.5352/JLS.2004.14.5.727
  4. Chin, J.E., H.S. Lee and K.C. Kim. 2006. Effect of mushroom extracts on tyrosinase promoter. Korean J. Sanitation 21(3):1-8 (in Korean).
  5. Choi, I.Y., J.S. Choi, W.H. Lee, Y.J. Yu, G.T. Joung, I.O. Ju and T.K. Choi. 1999. The condition of production of artificial fruiting body of Cordyceps militaris. Korean J. Mycol. 27(4):243-248 (in Korean).
  6. Choi, J.H., G.S. Kim, S.E. Lee, J.E. Cho, G.H. Sung, D.Y. Lee, S.Y. Kim, T.H. Lee and H.J. Noh. 2012. Anti-inflammatory effects of Cordyceps militaris extracts. J. Mushroom Sci. Prod. 10(4):249-253.
  7. Choi, Y.S., H.K. Kim, B.J. Lee and Y.G. Kim. 2009. Characteristics and breeding of a new variety Cordyceps militaris Yedang 3. J. Mushroom Sci. Prod. 7(4):182-186 (in Korean).
  8. Das, S.K., M. Masuda, A. Sakurai and M. Sakakibara. 2010. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospect. Fitoterapia 81(8):961-968. https://doi.org/10.1016/j.fitote.2010.07.010
  9. Dong, J.Z., C. Lei, X.R. Ai and Y. Wang. 2012. Selenium enrichment on Cordyceps militaris Link and analysis on its main active components. Appl. Biochem. Biotechnol. 166:1215-1224. https://doi.org/10.1007/s12010-011-9506-6
  10. Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium, Oxford University Press, Oxford, UK. pp. 95-98.
  11. Hong, S.M., H.D. Cho, J.H. Kim, J.Y. Lee, J.M. Park and K.I. Seo. 2016. Anti-oxidant and anti-proliferative effects of water extract mixture of Cordyceps militaris and Allium tuberosum. J. Life Sci. 26:805-811 (in Korean). https://doi.org/10.5352/JLS.2016.26.7.805
  12. Hur, H. 2008. Chemical ingredients of Cordyceps militaris. Mycobiology 36:233-235. https://doi.org/10.4489/MYCO.2008.36.4.233
  13. Jeong, J.W., C.Y. Jin, M. O. Kim, J.Y. Lee, Y.H. Choi and J.D. Lee. 2009. RAPD analysis and cordycepin concentration of hybrided Cordyceps militaris strains by mating. Korean J. Mycol. 37(1):86-90 (in Korean). https://doi.org/10.4489/KJM.2009.37.1.086
  14. Jo, S.J., T.H. Lee, D.H. Chae and Y.H. Han. 2004. Optimization of culture condition and media composition on the production of cordycepin by Cordyceps militaris. Korean J. Microbiol. 40(3):217-220 (in Korean).
  15. Jo, S.J., T.H. Lee, D.H. Chae and Y.H. Han. 2005. Effect of light conditions on production of cordycepin of Cordyceps militaris. Korean J. Microbiol. 41(3):236-238 (in Korean).
  16. Kang, N., H.H. Lee, I. Park and Y.S. Seo. 2017. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology 45(1):31-38. https://doi.org/10.5941/MYCO.2017.45.1.31
  17. Kim, H.J., T.H. Lee, Y.S. Kwon, M.W. Son and C.K. Kim. 2012. Immunomodulatory activities of ethanol extract of Cordyceps militaris in immunocompromised mice. J. Korean Soc. Food Sci. Nutr. 41(4):494-500 (in Korean). https://doi.org/10.3746/jkfn.2012.41.4.494
  18. Kim, H.S., Y.J. Rho and M. Choe. 2005. Cordyceps militaris increases hepatic glucokinase activities. J. Korean Soc. Food Sci. Nutr. 34(2):158-161 (in Korean). https://doi.org/10.3746/jkfn.2005.34.2.158
  19. Kim, J.R. S.H. Yeon, H.S. Kim and Y.J. Ahn. 2002. Larvicidal activity against Plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris. Pest Manag. Sci. 58(7):713-717. https://doi.org/10.1002/ps.508
  20. Kim, S.W., C.P. Xu, H.J. Hwang, J.W. Choi, C.W. Kim and J.W. Yun. 2003. Production and characterization of exopolysaccharides from an entomopathogenic fungus Cordyceps militaris NG3. Biotechnol. Prog. 19(2):428-435. https://doi.org/10.1021/bp025644k
  21. Kim, Y.D., S.H. Kwak, K.J. Kim, K.S. Seo, T.Y. Park, K.Y. Yu and S.W. Jin. 2014. The analysis of useful components in Flammulina velutipes fruit body, Flammulina velutipes mycelium and Cordyceps militaris mycelium. J. Mushroom 12(3):193-200. https://doi.org/10.14480/JM.2014.12.3.193
  22. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.
  23. Lee, B.J., M.A. Lee, Y.G. Kim, K.W. Lee, Y.S. Choi and B.E. Lee. 2015. Varietal characteristics of cross-bred Cordyceps militaris 'Dowonhonghco'. J. Mushroom Sci. Prod. 13(3):151-156. https://doi.org/10.14480/JM.2015.13.3.151
  24. Lee, B.J., M.A. Lee, Y.G. Kim, K.W. Lee, Y.S. Choi and B.E. Lee. and H.Y. Song. 2013. Cultural characteristics of Cordyceps militaris strain 'Yedang 3' on various media and nutritional conditions. J. Mushroom Sci. Prod. 11(3):124-130. https://doi.org/10.14480/JM.2013.11.3.124
  25. Lee, D.E., S.Y. Lee, J.S. Kim, C.K. Cho, H.S. Yoo and S.I. Choi. 2009. Antitumor effect of Hang-Am-Dan (HAD) and its ingredients on Calu6 and MCF-7 human cancer cell lines. J. Korean Oriental Med. 30(5):50-60 (in Korean).
  26. Lee, H.M., Y.J. Lee and T.S. Park. 2004. Tumor growth inhibitory and immunomodulatory activities of Cordyceps militaris water extracts in ICR mice bearing Sarcoma-180 solid tumor. J. Korean Soc. Food. Sci. Nutr. 33:59-65 (in Korean). https://doi.org/10.3746/jkfn.2004.33.1.059
  27. Lee, S.M, Y.G. Kim, H.C. Park, K.K. Kim, H.J. Son, C.O. Hong and N.S. Park. 2017. Properties of the silkworm (Bombyx mori) Dongchunghacho, a newly developed Korean medicinal insect-borne mushroom: Mass-production and pharmacological actions. Korean J. Life Sci. 27(2):247-266 (in Korean). https://doi.org/10.5352/JLS.2017.27.2.247
  28. Lee, S.M., N.S. Park and E.J. Park. 2006. Effects of Cordyceps militaris cultivated on rice on lipid metabolism in rats fed high fat-cholesterol diet. J. Food Sci. Nutr. 11:36-41 (in Korean).
  29. Lou, H., J. Lin, L. Guo, X. Wang, S. Tian, C. Liu, Y. Zhao and R. Zhao. 2019. Advances in research on Cordyceps militaris degeneration. Appl. Microbiol. Biotechnol. 103(19):7835-7841. https://doi.org/10.1007/s00253-019-10074-z
  30. Masino, S.A., M. Jr. Kawamura, L.M. Plotkin, J. Svedova, Fj Jr. DiMario and I.M. Eigsti. 2011. The relationship between the neuromodulator adenosine and behavioral symptoms of autism. Neurosci Lett. 500(1):1-5. https://doi.org/10.1016/j.neulet.2011.06.007
  31. Nallathamby, N., G.S. Lee, S. Vidyadaran, S.N. Abd Malek, J. Raman and V. Sabaratnam. 2015. Ergosterol of Cordyceps militaris attenuates LPS induced inflammation in BV2 Microglia cells. Nat. Prod. Commun. 10(6):885-886.
  32. Ohta, Y., J.B. Lee, K. Hayashi, A. Fujita, D.K. Park and T. Hayashi. 2007. In vivo anti-influenza virus activity of animmunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J. Agric. Food Chem. 55:10194-10199. https://doi.org/10.1021/jf0721287
  33. Park, C.S., C.J. Kwon, M.A. Choi, G.S. Park and K.H. Choi. 2002. Antioxidative and nitrite scavenging activities of Cordyceps militaris extracts. Korean J. Food Preserv. 9:109-113 (in Korean).
  34. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406-425.
  35. Shrestha, B., W. Zhang, Y. Zhang and X. Liu. 2012. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 11:599-614. https://doi.org/10.1007/s11557-012-0825-y
  36. Shrestha, B., Y.J. Park, S.K. Han, S.K. Choi and J.M. Sung. 2004. Instability in in vitro fruiting of Cordyceps militaris. J. Mushroom Sci. Prod. 2(3):140-144.
  37. Seo, K.H., J.Y. Park, H.J. Noh, J.Y. Lee, E.Y. Young, J.G. Han, J.H. Kim and M.S. Cheong. 2018. Anti-inflammatory effects of various mushrooms in LPS-stimulated RAW264.7 cells. Korean J. Plant Res. 31(5):478-488 (in Korean). https://doi.org/10.7732/KJPR.2018.31.5.478
  38. Sung, G.H., N.L. Hywel-Jones, J.M. Sung, J.J. Luangsa-Ard, B. Shrestha and J.W. Spatafora. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57:5-59. https://doi.org/10.3114/sim.2007.57.01
  39. Sung, J.M., S.H. Kim, C.S. Yoon, G.H. Sung and Y.W. Kim. 1999. Analysis of genetic relationship of Cordyceps militaris in Korea by random amplified polymorphic DNA. Korean J. Mycol. 27(4):256-273 (in Korean).
  40. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
  41. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res. 25(24):4876-4882. https://doi.org/10.1093/nar/25.24.4876
  42. Tran, N.Q. and D.X. Tran. 2019. Xanthine oxidase inhibitory potential, antioxidant and antibacterial activities of Cordyceps militaris (L.) link fruiting body. Medicines 6(1):1-13 https://doi.org/10.3390/medicines6010001
  43. Tuli, H.S., A.K. Sharma, S.S. Sandhu and D. Kashyap. 2013. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93(23):863-869. https://doi.org/10.1016/j.lfs.2013.09.030
  44. Yang, H., S. Kim, M. Jang, H. Kim, S. Lee, Y. Kim, Y. Eom, G. Kang, L. Chiang, J.H. Baek, J.H. Ryu, Y.E. Lee, J. Koh and H. Jung. 2019. Two-phase delivery using a horse oil and adenosine-loaded dissolving microneedle patch for skin barrier restoration, moisturization, and wrinkle improvement. J. Cosmet. Dermatol. 18(3):936-943. https://doi.org/10.1111/jocd.12768
  45. Zhang, J, C. Wen, Y. Duan, H. Zhang and H. Ma. 2019. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int J Biol Macromol. 132:906-914. https://doi.org/10.1016/j.ijbiomac.2019.04.020