DOI QR코드

DOI QR Code

Heterologous Gene Expression System Using the Cold-Inducible CnAFP Promoter in Chlamydomonas reinhardtii

  • Kim, Minjae (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Kim, Jongrae (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Kim, Sanghee (Division of Polar Life Science, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Jin, EonSeon (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
  • Received : 2020.07.20
  • Accepted : 2020.08.14
  • Published : 2020.11.28

Abstract

To increase the availability of microalgae as producers of valuable compounds, it is necessary to develop novel systems for gene expression regulation. Among the diverse expression systems available in microalgae, none are designed to induce expression by low temperature. In this study, we explored a cold-inducible system using the antifreeze protein (AFP) promoter from a polar diatom, Chaetoceros neogracile. A vector containing the CnAFP promoter (pCnAFP) was generated to regulate nuclear gene expression, and reporter genes (Gaussia luciferase (GLuc) and mVenus fluorescent protein (mVenus)) were successfully expressed in the model microalga, Chlamydomonas reinhardtii. In particular, under the control of pCnAFP, the expression of these genes was increased at low temperature, unlike pAR1, a promoter that is widely used for gene expression in C. reinhardtii. Promoter truncation assays showed that cold inducibility was still present even when pCnAFP was shortened to 600 bp, indicating the presence of a low-temperature response element between -600 and -477 bp. Our results show the availability of new heterologous gene expression systems with cold-inducible promoters and the possibility to find novel low-temperature response factors in microalgae. Through further improvement, this cold-inducible promoter could be used to develop more efficient expression tools.

Keywords

References

  1. Potvin G, Zhang Z. 2010. Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol. Adv. 28: 910-918. https://doi.org/10.1016/j.biotechadv.2010.08.006
  2. Bajhaiya AK, Moreira JZ, Pittman JK. 2017. Transcriptional engineering of microalgae: prospects for high-value chemicals. Trends Biotechnol. 35: 95-99. https://doi.org/10.1016/j.tibtech.2016.06.001
  3. Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648. https://doi.org/10.1007/s00253-004-1647-x
  4. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs 9: 1607-1624. https://doi.org/10.3390/md9091607
  5. Kim M, Ahn J, Jeon H, Jin E. 2017. Development of a Dunaliella tertiolecta strain with increased zeaxanthin content using random mutagenesis. Mar. Drugs 15: 189. https://doi.org/10.3390/md15060189
  6. Saini DK, Chakdar H, Pabbi S, Shukla P. 2019. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit. Rev. Food Sci. Nutr. 60: 391-405. https://doi.org/10.1080/10408398.2018.1533518
  7. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E. 2004. Transgenic microalgae as green cell-factories. Trends Biotechnol. 22: 45-52. https://doi.org/10.1016/j.tibtech.2003.11.003
  8. Doron L, Segal Na, Shapira M. 2016. Transgene expression in microalgae-from tools to applications. Front. Plant Sci. 7: 505.
  9. Davies JP, Weeks DP, Grossman AR. 1992. Expression of the arylsulfatase gene from the β 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 20: 2959-2965. https://doi.org/10.1093/nar/20.12.2959
  10. Schroda M, Blocker D, Beck CF. 2000. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 21: 121-131. https://doi.org/10.1046/j.1365-313x.2000.00652.x
  11. Goldschmidt-Clermont M, Rahire M. 1986. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J. Mol. Biol. 191: 421-432. https://doi.org/10.1016/0022-2836(86)90137-3
  12. Kindle KL. 1987. Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol. Biol. 9: 547-563. https://doi.org/10.1007/BF00020532
  13. Heitzer M, Zschoernig B. 2007. Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/Iox-system. Biotechniques 43: 324. https://doi.org/10.2144/000112556
  14. Kimura M, Manabe K, Abe T, Yoshida S, Matsui M, Yamamoto YY. 2003. Analysis of hydrogen peroxide-independent expression of the high-light-inducible ELIP2 gene with the aid of the ELIP2 promoter-luciferase fusion. Photochem. Photobiol. 77: 668-674. https://doi.org/10.1562/0031-8655(2003)077<0668:AOHPEO>2.0.CO;2
  15. Park S, Lee Y, Lee J-H, Jin E. 2013. Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 238: 1147-1156. https://doi.org/10.1007/s00425-013-1955-4
  16. Qing G, Ma L-C, Khorchid A, Swapna G, Mal TK, Takayama MM, et al. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22: 877-882. https://doi.org/10.1038/nbt984
  17. Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y. 2019. Molecular genetic tools and emerging synthetic biology strategies to increase cellular oil content in Chlamydomonas reinhardtii. Plant Cell Physiol. 60: 1184-1196. https://doi.org/10.1093/pcp/pcz022
  18. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, et al. 2007. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol. J. 5: 402-412. https://doi.org/10.1111/j.1467-7652.2007.00249.x
  19. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, et al. 2010. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonasreinhardtii. Plant Biotechnol. J. 8: 719-733. https://doi.org/10.1111/j.1467-7652.2010.00503.x
  20. Baier T, Kros D, Feiner RC, Lauersen KJ, Muller KM, Kruse O. 2018. Engineered fusion proteins for efficient protein secretion and purification of a human growth factor from the green microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 7: 2547-2557. https://doi.org/10.1021/acssynbio.8b00226
  21. Davies PL, Baardsnes J, Kuiper MJ, Walker VK. 2002. Structure and function of antifreeze proteins. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 357: 927-935. https://doi.org/10.1098/rstb.2002.1081
  22. Kim HJ, Lee JH, Hur YB, Lee CW, Park S-H, Koo B-W. 2017. Marine antifreeze proteins: structure, function, and application to cryopreservation as a potential cryoprotectant. Mar. Drugs 15: 27. https://doi.org/10.3390/md15020027
  23. Jung G, Lee C-G, Kang S-H, Jin E. 2007. Annotation and expression profile analysis of cDNas from the Antarctic diatom Chaetoceros neogracile. J. Microbiol. Biotechnol. 17: 1330-1337.
  24. Gwak IG, sic Jung W, Kim HJ, Kang S-H, Jin E. 2010. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar. Biotechnol. 12: 630-639. https://doi.org/10.1007/s10126-009-9250-x
  25. Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju J-H, et al. 2014. An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. FASEB J. 28: 4924-4935. https://doi.org/10.1096/fj.14-256388
  26. Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K. 2010. Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ. Microbiol. 12: 1041-1052. https://doi.org/10.1111/j.1462-2920.2009.02149.x
  27. Harris EH. 2013. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use, pp. 243. Ed. Elsevier.
  28. Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297-300. https://doi.org/10.1093/nar/27.1.297
  29. Chow C-N, Zheng H-Q, Wu N-Y, Chien C-H, Huang H-D, Lee T-Y, et al. 2016. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44: D1154-D1160. https://doi.org/10.1093/nar/gkv1035
  30. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325-327. https://doi.org/10.1093/nar/30.1.325
  31. Solovyev VV, Shahmuradov IA, Salamov AA. 2010. Identification of promoter regions and regulatory sites. Methods Mol. Biol. 674: 57-83. https://doi.org/10.1007/978-1-60761-854-6_5
  32. Baek K, Lee Y, Nam O, Park S, Sim SJ, Jin E. 2016. Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii. Biotechnol. J. 11: 384-392. https://doi.org/10.1002/biot.201500269
  33. Berthold P, Schmitt R, Mages W. 2002. An engineered Streptomyces hygroscopicus aph 7'' gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153: 401-412. https://doi.org/10.1078/14344610260450136
  34. Shao N, Bock R. 2008. A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr. Genet. 53: 381-388. https://doi.org/10.1007/s00294-008-0189-7
  35. Valledor L, Furuhashi T, Hanak A-M, Weckwerth W. 2013. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell. Proteomics 12: 2032-2047. https://doi.org/10.1074/mcp.M112.026765
  36. Li L, Peng H, Tan S, Zhou J, Fang Z, Hu Z, et al. 2019. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics 112: 1128-1138. https://doi.org/10.1016/j.ygeno.2019.06.027
  37. Wurdinger T, Badr C, Pike L, De Kleine R, Weissleder R, Breakefield XO, et al. 2008. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5: 171-173. https://doi.org/10.1038/nmeth.1177
  38. Kim J, Liu L, Hu Z, Jin E. 2018. Identification and functional analysis of the psaD promoter of Chlorella vulgaris using heterologous model strains. Int. J. Mol. Sci. 19: 1969. https://doi.org/10.3390/ijms19071969
  39. Baker SS, Wilhelm KS, Thomashow MF. 1994. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713. https://doi.org/10.1007/BF00029852
  40. White TC, Simmonds D, Donaldson P, Singh J. 1994. Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiol. 106: 917-928. https://doi.org/10.1104/pp.106.3.917
  41. Jiang C, Iu B, Singh J. 1996. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 30: 679-684. https://doi.org/10.1007/BF00049344
  42. Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X, et al. 2010. Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol. Breed 26: 1-17. https://doi.org/10.1007/s11032-009-9371-y
  43. Lindlof A, Brautigam M, Chawade A, Olsson O, Olsson B. 2009. In silico analysis of promoter regions from cold-induced genes in rice (Oryza sativa L.) and Arabidopsis thaliana reveals the importance of combinatorial control. Bioinformatics 25: 1345-1348. https://doi.org/10.1093/bioinformatics/btp172
  44. Lauersen KJ, Kruse O, Mussgnug JH. 2015. Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl. Microbiol. Biotechnol. 99: 3491-3503. https://doi.org/10.1007/s00253-014-6354-7
  45. Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C. 2016. Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res. 16: 266-274. https://doi.org/10.1016/j.algal.2016.03.026
  46. Phillips JR, Dunn MA, Hughes MA. 1997. mRNA stability and localisation of the low-temperature-responsive barley gene family blt14. Plant Mol. Biol. 33: 1013-1023. https://doi.org/10.1023/A:1005717613224