DOI QR코드

DOI QR Code

Characterization of CYP125A13, the First Steroid C-27 Monooxygenase from Streptomyces peucetius ATCC27952

  • Rimal, Hemraj (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University) ;
  • Subedi, Pradeep (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University) ;
  • Kim, Ki -Hwa (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University) ;
  • Park, Hyun (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jun Hyuck (Unit of Research for Practical Application, Korea Polar Research Institute) ;
  • Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University)
  • Received : 2020.07.02
  • Accepted : 2020.09.11
  • Published : 2020.11.28

Abstract

The characterization of cytochrome P450 CYP125A13 from Streptomyces peucetius was conducted using cholesterol as the sole substrate. The in vitro enzymatic assay utilizing putidaredoxin and putidaredoxin reductase from Pseudomonas putida revealed that CYP125A13 bound cholesterol and hydroxylated it. The calculated KD value, catalytic conversion rates, and Km value were 56.92 ± 11.28 μM, 1.95 nmol min-1 nmol-1, and 11.3 ± 2.8 μM, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that carbon 27 of the cholesterol side-chain was hydroxylated, characterizing CYP125A13 as steroid C27-hydroxylase. The homology modeling and docking results also revealed the binding of cholesterol to the active site, facilitated by the hydrophobic amino acids and position of the C27-methyl group near heme. This orientation was favorable for the hydroxylation of the C27-methyl group, supporting the in vitro analysis. This was the first reported case of the hydroxylation of cholesterol at the C-27 position by Streptomyces P450. This study also established the catalytic function of CYP125A13 and provides a solid basis for further studies related to the catabolic potential of Streptomyces species.

Keywords

References

  1. Guengerich FP. 2018. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 8: 10964-10976. https://doi.org/10.1021/acscatal.8b03401
  2. Bernhardt R, Urlacher VB. 2014. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98: 6185-6203. https://doi.org/10.1007/s00253-014-5767-7
  3. Bhattarai S, Liou K, Oh TJ. 2013. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539: 63-69. https://doi.org/10.1016/j.abb.2013.09.008
  4. Guengerich FP. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1: 359-366. https://doi.org/10.1038/nrd792
  5. Podust LM, Sherman DH. 2012. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 29: 1251-1266. https://doi.org/10.1039/c2np20020a
  6. De Montellano PRO. 2015. Cytocyhrome pp.450. Structure, mechanism, and biochemistry. Fourth edition. Springer Science & Business Media.
  7. Modi AR, Dawson JH. 2015. Oxidizing intermediates in P450 catalysis: a case for multiple oxidants. Adv. Exp. Med. Biol. 851: 63-81. https://doi.org/10.1007/978-3-319-16009-2_2
  8. Hrycay EG, Bandiera SM. 2012. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch. Biochem. Biophys. 522: 71-89. https://doi.org/10.1016/j.abb.2012.01.003
  9. Lamb DC, Guengerich FP, Kelly SL, Waterman MR. 2006. Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery. Expert Opin. Drug Metab. Toxicol. 2: 27-40. https://doi.org/10.1517/17425255.2.1.27
  10. Cerqueira NM, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, et al. 2016. Cholesterol biosynthesis: a mechanistic overview. Biochemistry 55: 5483-5506. https://doi.org/10.1021/acs.biochem.6b00342
  11. Lee W, VanderVen BC, Fahey RJ, Russell DG. 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288: 6788-6800. https://doi.org/10.1074/jbc.M112.445056
  12. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, et al. 2009. Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of C27 steroids. J. Biol. Chem. 284: 35534-35542. https://doi.org/10.1074/jbc.M109.072132
  13. Rosloniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, et al. 2009. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol. Microbiol. 74: 1031-1043. https://doi.org/10.1111/j.1365-2958.2009.06915.x
  14. Van Der Geize R, Dijkhuizen L. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7: 255-261. https://doi.org/10.1016/j.mib.2004.04.001
  15. Sojo M, Bru R, Lopez-Molina D, Garcia-Carmona F, Arguelles JC. 1997. Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis. Isolation and physiological characterization. Appl. Microbiol. Biotechnol. 47: 583-589. https://doi.org/10.1007/s002530050977
  16. Chiang YR, Ismail W, Heintz D, Schaeffer C, Van Dorsselaer A, Fuchs G. 2008. Study of anoxic and oxic cholestreol metabolism by Stereolibacterium denitrificans. J. Bacteriol. 190: 905-914. https://doi.org/10.1128/JB.01525-07
  17. Chen YR, Huan HH, Cheng TF, Tang TY, Liu WH. 2006. Expression of a cholesterol oxidase gene from Arthrobacter simplex in Escherichia coli and Pichia pastoris. Enzyme Microb. Technol. 39: 258-262.
  18. Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J. 2009. Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J. Bacteriol. 191: 6584-6591. https://doi.org/10.1128/JB.00488-09
  19. Petrusma M, Hessels G, Dijkhuizen L, van der Geize R. 2011. Multiplicity of 3-Ketosteroid-9α-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J. Bacteriol. 193: 3931-3940. https://doi.org/10.1128/JB.00274-11
  20. Fujimoto Y, Chen CS, Szeleczky Z, DiTullio D, Sih CJ. 1982. Microbial degradation of the phytosterol side chain. 1. Enzymatic conversion of 3-oxo-24-ethylcholest-4-en-26-oic acid into 3-oxochol-4-en-24-oic acid and androst-4-ene-3,17-dione. J. Am. Chem. Soc. 104: 4718-4720. https://doi.org/10.1021/ja00381a055
  21. Fujimoto Y, Chen CS, Gopalan AS, Sih CJ. 1982. Microbial degradation of the phytosterol side chain. 2. Incorporation of NaH14Co3 onto the C-28 position. J. Am. Chem. Soc. 104: 4720-4722. https://doi.org/10.1021/ja00381a056
  22. Marsheck WJ, Kraychy S, Muir RD. 1972. Microbial degradation of sterols. Appl. Microbiol. 23: 72-77. https://doi.org/10.1128/am.23.1.72-77.1972
  23. Sih CJ, Wang KC, Tai HH. 1968. Mechanism of steroid oxidation by microorganisms XIII. C22 acid intermediates in the degradation of the cholesterol side chain. Biochemistry 7: 796-807. https://doi.org/10.1021/bi00842a038
  24. Sih CJ, Tai HH, Tsong YY, Lee SS, Coombe RG. 1968. Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry 7: 808-818. https://doi.org/10.1021/bi00842a039
  25. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  26. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4: 406-425.
  27. Nicholas KB, Nicholas HB. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. Computer Science, Biology.
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  29. Mouri T, Michizoe J, Ichinose H, Kamiya N, Goto M. 2006. A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. Appl. Microbiol. Biotechnol. 72: 514-520. https://doi.org/10.1007/s00253-005-0289-y
  30. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes: Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378. https://doi.org/10.1016/S0021-9258(20)82244-3
  31. Johnston JB, Ouellet H, Ortiz de Montellano PR. 2010. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J. Biol. Chem. 285: 36352-36360. https://doi.org/10.1074/jbc.M110.161117
  32. Ahmida HS, Bertucci P, Franzò L, Massoud R, Cortese C, Lala A, et al. 2006. Simultaneous determination of plasmatic phytosterols and cholesterol precursors using gas chromatography-mass spectrometry (GC-MS) with selective ion monitoring (SIM). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 14: 43-47.
  33. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. 1995. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal. Biochem. 225: 73-80. https://doi.org/10.1006/abio.1995.1110
  34. Ouellet H, Guan S, Johnston JB, Chow ED, Kells PM, Burlingame AL, et al. 2010. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol. Microbiol. 77: 730-742. https://doi.org/10.1111/j.1365-2958.2010.07243.x
  35. Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779-815. https://doi.org/10.1006/jmbi.1993.1626
  36. Lovell SC, Davis IW, Arendall 3rd WB, de Bakker PIW, Word JM, Prisant MG, et al. 2003. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 50: 437-450. https://doi.org/10.1002/prot.10286
  37. Sippl MJ. 1993. Recognition of errors in three-dimensional structures of proteins. Proteins 17: 355-362. https://doi.org/10.1002/prot.340170404
  38. Trott O, Olson AJ. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
  39. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and AutoDock Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. https://doi.org/10.1002/jcc.21256
  40. DeLano, Warren L. 2002. Pymol: An open-source molecular graphics tool. Ccp4 Newsl. Protein Cryst. 40: 82-92.
  41. Mak PJ, Denisov IG. 2018. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim. Biophys. Acta Proteins Proteom. 1866: 178-204. https://doi.org/10.1016/j.bbapap.2017.06.021
  42. Conner KP, Schimpf AM, Cruce AA, McLean KJ, Munro AW, Frank DJ, et al. 2014. Strength of axial water ligation in substrate-free cytochrome P450s is isoform dependent. Biochemstry 53: 1428-1434. https://doi.org/10.1021/bi401547j
  43. Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, et al. 2004. Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J. Biol. Chem. 279: 23274-23286. https://doi.org/10.1074/jbc.M401716200
  44. McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, et al. 2009. The structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J. Biol. Chem. 51: 35524-35533.
  45. Jung C, Ristau O, Rein H. 1991. The high-spin/low-spin equilibrium in cytochrome P-450 a new method for determination of the high-spin content. Biochim. Biophys. Acta 1076: 130-136. https://doi.org/10.1016/0167-4838(91)90229-S
  46. Denisov IG, Makris TM, Sligar SG, Schlichting I. 2005. Structure and chemistry of cytochrome P450. Chem. Rev. 105: 2253-2278. https://doi.org/10.1021/cr0307143
  47. McLafferty FW, Stauffer DB. 1989. The Wiley / NBS Registry of Mass Spectral Data, 7 volume Set. Wiley, New York.
  48. Mast N, Graham SE, Andersson U, Bjorkhem I, Hill C, Peterson J, et al. 2005. Cholesterol binding to cytochrome P450 7A1, a key enzyme in bile acid biosynthesis. Biochemistry 44: 3259-3271. https://doi.org/10.1021/bi047566a
  49. Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. 2009. Biochemical and structural characterization of CYP124: a methylbranched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106: 20687-20692. https://doi.org/10.1073/pnas.0907398106