DOI QR코드

DOI QR Code

Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice

  • Cho, Hye-Won (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Eom, Yong-Bin (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University)
  • Received : 2020.06.23
  • Accepted : 2020.09.10
  • Published : 2020.11.28

Abstract

Colorectal cancer (CRC) is the leading cause of common malignant neoplasm worldwide. Many studies have analyzed compositions of gut microbiota associated with various diseases such as inflammatory bowel diseases (IBD) and colon cancer. One of the most representative bacteria involved in CRC is enterotoxigenic Bacteroides fragilis (ETBF), a species belonging to phylum Bacteroidetes. We used ETBF colonized mice with azoxymethane (AOM)/dextran sulphate sodium (DSS) and zerumbone, a compound with anti-bacterial effect, to determine whether zerumbone could restore intestinal microbiota composition. Four experimental groups of mice were used: sham, ETBF colonized AOM/DSS group, ETBF colonized AOM/DSS group zerumbone 60 mg kg-1 (ETBF/AOM/DSS + Z (60)), and only zerumbone (60 mg kg-1)-treated group. We performed reversible dye terminators-based analysis of 16S rRNA gene region V3-V4 for group comparison. Microbiota compositions of ETBF/AOM/DSS + Z (60) group and ETBF colonized AOM/DSS group not given zerumbone were significantly different. There were more Bacteroides in ETBF/AOM/DSS + Z (60) group than those in ETBF colonized AOM/DSS group, suggesting that B. fragilis could be a normal flora activated by zerumbone. In addition, based on linear discriminant analysis of effect size (LEfSe) analysis, microbial diversity decreased significantly in the ETBF colonized AOM/DSS group. However, after given zerumbone, the taxonomic relative abundance was increased. These findings suggest that zerumbone not only influenced the microbial diversity and richness, but also could be helpful for enhancing the balance of gut microbial composition. In this work, we demonstrate that zerumbone could restore the composition of intestinal microbiota.

Keywords

References

  1. Siegel RL, Miller KD, Jemal A. 2018. Cancer statistics, 2018. CA Cancer J. Clin. 68: 7-30. https://doi.org/10.3322/caac.21442
  2. Brenner H, Kloor M, Pox CP. 2014. Colorectal cancer. Lancet 383: 1490-1502. https://doi.org/10.1016/S0140-6736(13)61649-9
  3. Thomas AM, Jesus EC, Lopes A, Aguiar S, Jr., Begnami MD, Rocha RM, et al. 2016. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front. Cell. Infect. Microbiol. 6: 179.
  4. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. 2011. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut. 60: 631-637. https://doi.org/10.1136/gut.2010.223263
  5. Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al. 2011. Towards the human colorectal cancer microbiome. PLoS One 6: e20447. https://doi.org/10.1371/journal.pone.0020447
  6. Brennan CA, Garrett WS. 2016. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 70: 395-411. https://doi.org/10.1146/annurev-micro-102215-095513
  7. Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141. https://doi.org/10.1016/j.cell.2014.03.011
  8. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. 2012. Intestinal inflammation targets cancerinducing activity of the microbiota. Science 338: 120-123. https://doi.org/10.1126/science.1224820
  9. Wang CZ, Huang WH, Zhang CF, Wan JY, Wang Y, Yu C, et al. 2018. Role of intestinal microbiome in American ginseng-mediated colon cancer prevention in high fat diet-fed AOM/DSS mice [corrected]. Clin. Transl. Oncol. 20: 302-312. https://doi.org/10.1007/s12094-017-1717-z
  10. Janem WF, Scannapieco FA, Sabharwal A, Tsompana M, Berman HA, Haase EM, et al. 2017. Salivary inflammatory markers and microbiome in normoglycemic lean and obese children compared to obese children with type 2 diabetes. PLoS One 12: e0172647. https://doi.org/10.1371/journal.pone.0172647
  11. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 11070-11075. https://doi.org/10.1073/pnas.0504978102
  12. Sun J, Kato I. 2016. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 3: 130-143. https://doi.org/10.1016/j.gendis.2016.03.004
  13. Santosh Kumar SC, Srinivas P, Negi PS, Bettadaiah BK. 2013. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chem. 141: 1097-1103. https://doi.org/10.1016/j.foodchem.2013.04.021
  14. Kim HR, Rhee KJ, Eom YB. 2019. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 57: 99-106. https://doi.org/10.1016/j.anaerobe.2019.04.001
  15. Kononen E, Asikainen S, Jousimies-Somer H. 1992. The early colonization of gram-negative anaerobic bacteria in edentulous infants. Oral. Microbiol. Immunol. 7: 28-31. https://doi.org/10.1111/j.1399-302X.1992.tb00016.x
  16. Troy EB, Kasper DL. 2010. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front. Biosci. 15: 25-34. https://doi.org/10.2741/3603
  17. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024
  18. Deng H, Li Z, Tan Y, Guo Z, Liu Y, Wang Y, et al. 2016. A novel strain of Bacteroidesfragilis enhances phagocytosis and polarises M1 macrophages. Sci. Rep. 6: 29401. https://doi.org/10.1038/srep29401
  19. Wang Y, Deng H, Li Z, Tan Y, Han Y, Wang X, et al. 2017. Safety evaluation of a novel strain of Bacteroides fragilis. Front. Microbiol. 8: 435.
  20. Kwon KH, Barve A, Yu S, Huang MT, Kong AN. 2007. Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models. Acta. Pharmacol. Sin. 28: 1409-1421. https://doi.org/10.1111/j.1745-7254.2007.00694.x
  21. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA. 2011. Zingiber zerumbet (L.) Smith: A review of its ethnomedicinal, chemical, and pharmacological uses. Evid. Based. Complement. Alternat. Med. 2011: 543216.
  22. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, et al. 2014. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. Biomed. Res. Int. 2014: 920742.
  23. Moreira da Silva T, Pinheiro CD, Puccinelli Orlandi P, Pinheiro CC, Soares Pontes G. 2018. Zerumbone from Zingiber zerumbet (L.) smith: a potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement Altern. Med. 18: 301. https://doi.org/10.1186/s12906-018-2360-0
  24. Yodkeeree S, Sung B, Limtrakul P, Aggarwal BB. 2009. Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species. Cancer Res. 69: 6581-6589. https://doi.org/10.1158/0008-5472.CAN-09-1161
  25. Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al. 2010. Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice. Fitoterapia 81: 855-858. https://doi.org/10.1016/j.fitote.2010.05.009
  26. Hwang S, Jo M, Hong JE, Park CO, Lee CG, Yun M, et al. 2019. Zerumbone suppresses enterotoxigenic Bacteroidesfragilis infectioninduced colonic inflammation through inhibition of NF-kappaBeta. Int. J. Mol. Sci. 20: 4560. https://doi.org/10.3390/ijms20184560
  27. Hwang S, Lee CG, Jo M, Park CO, Gwon SY, Hwang S, et al. 2020. Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model. Int. J. Med. Sci. 17: 145-152. https://doi.org/10.7150/ijms.38371
  28. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2: 6. https://doi.org/10.1186/2049-2618-2-6
  29. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  30. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13: 31. https://doi.org/10.1186/1471-2105-13-31
  31. Eddy SR. 2011. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7: e1002195. https://doi.org/10.1371/journal.pcbi.1002195
  32. Lee B, Moon T, Yoon S, Weissman T. 2017. DUDE-Seq: Fast, flexible, and robust denoising for targeted amplicon sequencing. PLoS One 12: e0181463. https://doi.org/10.1371/journal.pone.0181463
  33. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  34. Myers EW, Miller W. 1988. Optimal alignments in linear space. CABIOS 4: 11-17.
  35. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  36. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60
  37. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Micr. 67: 1613. https://doi.org/10.1099/ijsem.0.001755
  38. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. 2013. The gut microbiome modulates colon tumorigenesis. mBio 4: e00692-00613.
  39. Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, et al. 2006. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel. Dis. 12: 106-111. https://doi.org/10.1097/01.MIB.0000200323.38139.c6
  40. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635-1638. https://doi.org/10.1126/science.1110591
  41. Costello EK, Gordon JI, Secor SM, Knight R. 2010. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4: 1375-1385. https://doi.org/10.1038/ismej.2010.71
  42. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21: 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
  43. Antunes EN, Ferreira EO, Falcao LS, Paula GR, Avelar KE, Barroso DE, et al. 2004. Non-toxigenic pattern II and III Bacteroides fragilis strains: coexistence in the same host. Res. Microbiol. 155: 522-524. https://doi.org/10.1016/j.resmic.2004.04.008
  44. Chan JL, Wu S, Geis AL, Chan GV, Gomes TAM, Beck SE, et al. 2019. Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A. Mucosal. Immunol. 12: 164-177. https://doi.org/10.1038/s41385-018-0085-5
  45. Hwang S, Jo M, Hong JE, Park CO, Lee CG, Rhee K-J. 2020. Protective effects of zerumbone on colonic tumorigenesis in Enterotoxigenic Bacteroides Fragilis (ETBF)-colonized AOM/DSS BALB/c Mice. Int. J. Med. Sci. 21: 857.
  46. Hwang S, Jo M, Hong JE, Park CO, Lee CG, Yun M, et al. 2019. Zerumbone suppresses enterotoxigenic Bacteroides fragilis infectioninduced colonic inflammation through inhibition of NF-κΒ. Int. J. Med. Sci. 20: 4560.
  47. Gao Z, Guo B, Gao R, Zhu Q, Qin H. 2015. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 6: 20. https://doi.org/10.3389/fmicb.2015.00020
  48. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104: 7617-7621. https://doi.org/10.1073/pnas.0700440104
  49. Guinane CM, Lawton EM, O'Connor PM, O'Sullivan O, Hill C, Ross RP, et al. 2016. The bacteriocin bactofencin a subtly modulates gut microbial populations. Anaerobe 40: 41-49. https://doi.org/10.1016/j.anaerobe.2016.05.001
  50. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS. 2015. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J. Med. Res. 142: 23-32. https://doi.org/10.4103/0971-5916.162091
  51. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. 2017. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 17: 120. https://doi.org/10.1186/s12866-017-1027-1
  52. Ramakrishna BS. 2013. Role of the gut microbiota in human nutrition and metabolism. J. Gastroen. Hepatol. 28 Suppl 4: 9-17. https://doi.org/10.1111/jgh.12294
  53. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9: 123. https://doi.org/10.1186/1471-2180-9-123
  54. Kim H-R, Rhee K-J, Eom Y-B. 2019. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 57: 99-106. https://doi.org/10.1016/j.anaerobe.2019.04.001