DOI QR코드

DOI QR Code

Accuracy of dental model based on the state-of-the-art manufacturing technique

첨단 제조기술 기반으로 제작된 치과용 모형의 정확도에 관한 연구

  • Kim, Jae-Hong (Department of Dental Laboratory Science, College of Health Science, Catholic University of Pusan)
  • 김재홍 (부산가톨릭대학교 보건과학대학 치기공학과)
  • Received : 2020.09.28
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

This study compared the accuracy and reliability of definitive casts fabricated from a digital impression and conventional impression technique. A master model with the prepared upper full-arch tooth was used. Samples of ten plaster models and ten polyurethane models were duplicated using a selected standard master model. Six linear measurements were recorded between the landmarks, directly on each of the stone models and the polyurethane models on two occasions by a double examiner. The Wilcoxon signed-rank test, interclass correlation coefficient (ICC), measurement error (MSE), and limit of agreement (LoA) were used for statistical analysis. The ICC ranged from 0.76 to 0.99 when comparing the stone models and polyurethane models. The mean difference between the stone models and polyurethane models ranged from 0.09mm to 0.20mm, suggesting that stone models might be slightly larger than polyurethane models. Based on this study, the accuracy of the polyurethane models in evaluating the performance of an oral scanner and subtractive technology was acceptable. Further studies will be needed on patient subjects under clinical conditions that may involve missing or malpositioned teeth and fixed dental prostheses because this study was limited to use a standard master model and duplicated sample models in a laboratory setting.

본 연구의 목적은 전통적인 인상채득방식으로 제작된 석고모형과 구강 디지털 인상법을 이용하여 제작된 폴리우레탄 모형의 각 계측지점을 비교함으로써 첨단 제조기술로 제작된 모형의 정확성을 검증하는 것이다. 유치악 아크릴릭 구강모형을 선정하여 기존에 사용하던 방식의 석고모형과 최신경향의 방식으로 모형을 각 10개씩 제작하였다. 계측지점은 총 6곳을 지정한 후, 2인의 검사자가 2회로 나누어 버니어 캘리퍼스를 이용하여 측정하였다. 제작방법에 따른 모형의 각 계측치의 평균, 표준편차, 계측치 차이의 평균 등의 기술 통계량으로 제시하였고, 정확성 검정을 위해 윌콕슨 부호순위 검정을 시행하였으며, 검사자 내, 검사자 간, 제작방법 간의 신뢰성 분석은 급내 상관계수 분석과 측정오차를 구하였다. 실험결과 신뢰성은 급내 상관계수의 범위는 0.76에서 0.99의 값이 나타나 높은 신뢰도를 보였으며, 모형 제작방법에 따른 정확성은 모든 계측지점 간의 거리를 비교하였을 때 폴리우레탄 모형이 작게 계측되었으며 0.09~0.20mm의 범위로 선행연구의 결과에 의해 임상적으로 오차범위를 허용할 수 있는 것으로 나타났다. 구강 디지털 인상법의 사용으로 제작된 모형은 임상적으로 적절한 것으로 판단되지만, 향후 보다 정밀하고 사용하기 편리한 치과용 모형을 제작하기 위한 연구들이 추가적으로 이루어져야 할 것이며, 다양한 임상 데이터를 활용한 평가가 이루어져야 할 것으로 사료된다.

Keywords

References

  1. G. J. Christensen, "The state of fixed prosthodontics impressions: room for improvement", J Am Dent Assoc, Vol.136, No.3, pp.343-346, 2005. DOI: https://doi.org/10.14219/jada.archive.2005.0175.
  2. S. B. M. Patzelt, A. Emmanouilidi, S. Stampf, J. R. Strub, and W. Att, "Accuracy of full-arch scans using intraoral scanners," Clinical Oral Investigations, vol 18, no. 6, pp. 1687-1694, 2014. DOI: https://doi.org/10.1007/s00784-013-1132-y
  3. F. Beuer, J. Schweiger, D. Edelhoff, "Digital dentistry: an overview of recent developments for CAD/CAM generated restorations". Br Dent J, Vol. 204, No. 9, pp.505-511, 2008. DOI: https://doi.org/10.1038/sj.bdj.2008.350.
  4. S. Logozzo, E. M. Zanetti, G. Franceschini, A. Kilpela, and A. Makynen, "Recent advances in dental optics - Part I: 3D intraoral scanners for restorative dentistry," Optics and Lasers in Engineering, vol 54, pp. 203-221, 2014. DOI: https://doi.org/10.1016/j.optlaseng.2013.07.017
  5. W. J. van der Meer, F. S. Andriessen, D. Wismeijer, and Y. J. Ren, "Application of Intra-Oral Dental Scanners in the Digital Workflow of Implantology," Plos One, vol 7, no. 8, 2012. DOI: https://doi.org/10.1371/journal.pone.0043312
  6. J. H. Kim, K. B. Kim, W. C. Kim, J. H. Kim, and H. Y. Kim, "Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique," Korean J Orthod, vol 44, no. 2, pp. 69-76, 2014. DOI: https://doi.org/10.4041/kjod.2014.44.2.69
  7. G. J. Christensen, "Impressions are changing: deciding on conventional, digital or digital plus in-office milling", J Am Dent Assoc, Vol. 140, No. 10, pp. 1301-1304, 2009. DOI: https://doi.org/10.14219/jada.archive.2009.0054
  8. T. M. Barker, W. J. Earwaker, D. A. Lisle, "Accuracy of stereolithographic models of human anatomy", Australas Radiol, Vol. 38, No. 2, pp. 106-111, 1994. DOI: https://doi.org/10.1111/j.1440-1673.1994.tb00146.x
  9. J. Kragskov, S. Sindet-Pedersen, C. Gyldensted, K. L. Jensen, "A comparison of three dimensional computed tomography scans and stereolithographic models for evaluation of craniofacial anomalies", J Oral Maxillofac Surg, Vol. 54, No. 4, pp. 402-411, 1996. DOI: https://doi.org/10.1016/s0278-2391(96)90109-3
  10. W. Lill, P. Solar, C. Ulm, G. Watzek, R. Blahout, M. Matejka, "Reproducility of 3-dimensional CT-assisted model production in the maxillofacial area", Br J Oral Maxillofac Surg, Vol. 30, No. 4, pp. 233-236, 1992. DOI: https://doi.org/10.1016/0266-4356(92)90265-k
  11. A. P. Keating, J. Knox, R. Bibb, Zhurov Al, "A comparison of plaster, digital and reconstructed study model accuracy", J Orthod, Vol. 35, No. 3, pp. 191-201, 2008. DOI: https://doi.org/10.1179/146531207225022626
  12. B. Creed, H. K. Chung, D. E. Jeryl, J. X. James, P. Robert, A. Lee, "Comparison of the Accuracy of Linear Measurements Obtained from Cone Beam Computerized Tomography Images and Digital Models", Semin Orthod, Vol. 17, No. 1, pp. 49-56, 2011. DOI: https://doi.org/10.1053/j.sodo.2010.08.010
  13. M. Santoro, S. Galkin, M. Teredesai, T. J. Cangialosi, "Comparison of measurements made on digital and plaster models", Am J Orthod Dentofacial Orthop, Vol. 124, No. 1, pp. 101-105, 2003. DOI: https://doi.org/10.1016/s0889-5406(03)00152-5
  14. M. L. Quimby, K. W. Vig, R. G. Rashid, A. R. Firestone, "The accuracy and reliability of measurements made on computer-based digital models", Angle Orthod, Vol. 74, No. 3, pp. 298-303, 2004. DOI: https://doi.org/10.1043/0003-3219(2004)074<0298:TAAROM>2.0.CO;2
  15. O. Zilberman, J. A. Huggare, K. A. Parikakis, "Evaluation of the validity of tooth size and arch width measurements using conventional and three- dimensional virtual orthodontic models", Angle Orthod, Vol. 73, No. 3, pp. 301-306, 2003. DOI: https://doi.org/10.1043/0003-3219(2003)073<0301:EOTVOT>2.0.CO;2
  16. G. Dahlberg, "Statistical methods for medical and biological students", George Allen & Unwin Ltd, pp. 122-132, 1940.
  17. M. Henriksen, H. Lund, R. Moe-Nilssen, H. Bliddal, B. Danneskiod-Samsoe, "Test-retest reliability of trunk accelerometric gait analysis", Gait Posture, Vol. 19, No. 3, pp. 288-297, 2004. DOI: https://doi.org/10.1016/S0966-6362(03)00069-9
  18. D. L. Streiner, G. R. Norman, "Health measurement scales: a practical guide to their development and use", Oxford: Oxford University Press.
  19. L. G. Portney, M. P. Watkins, "Foundations of clinical research: applications to practice", Norwalk, CT; Appleton & Lange, 2009.
  20. W. T. Kim, "Evaluation of accuracy of orthodontic models fabricated by dental digital equipments", Kor J Dent Mater, Vol. 44, No. 3, pp. 255-262, 2017. DOI: http://dx.doi.org/10.14815/kjdm.2017.44.3.255
  21. S. Reich, S. Uhlen, S. Gozdowski, U. Lohbauer, "Measurement of cement thickness under lithium disilicate crowns using an impression material technique", Clin Oral Investig, Vol. 15, No. 4, pp. 521-526, 2011. DOI: https://doi.org/10.1007/s00784-010-0414-x
  22. R. G. Luthardt, R. Koch, H. Rudolph, M. H. Walter, "Qualitative computer aided evaluation of dental impressions in vivo", Dent Mater, Vol. 22, No. 1, pp. 69-76, 2006. DOI: https://doi.org/10.1016/j.dental.2005.02.015
  23. M. N. Lowey, "The development of a new method of cephalometric and study cast measuration with a computer controlled, video image capture system. Part II: study cast mensuration", Br J Orthod, Vol. 20, No. 4, pp. 315-331, 1993. DOI: https://doi.org/10.1179/bjo.20.4.315