References
- S. W. Kim & H. S. Park. (2020). An Exploratory Study on the Factors Determining Acceptance of Blockchain-Based Financial Platform by Gender. Journal of Digital Convergence, 18(3), 139-147. DOI : 10.14400/JDC.2020.18.3.139
- Y. H. Kim. (2019). A Study on Smart Contract for Personal Information Protection. Journal of Digital Convergence, 17(3), 215-220. DOI : 10.14400/JDC.2019.17.3.215
- A. M. Antonopoulos & G. Wood. (2018) Mastering Ethereum: Building Smart Contracts and Dapps, O'Reilly Media.
- H. M. Kim. (2020). A Study on Uncle Block Analysis of Blockchain Using Machine Learning Techniques. Information Systems Review, 22(1), 1-16. DOI : 10.14329/isr.2020.22.1.001
- C. Bai & J. Sarkis. (2020). A supply chain transparency and sustainability technology appraisal model for blockchain technology. International Journal of Production Research, 58(7), 2142-2162. DOI : 10.1080/00207543.2019.1708989
- X. Yue, H. Wang, D. Jin, M. Li & W. Jiang. (2016). Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. Journal of medical systems, 40(10), 218. DOI : 10.1007/s10916-016-0574-6
- T. T. Kuo, H. E. Kim & L. Ohno-Machado, (2017). Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 24(6), 1211-1220. DOI : 10.1093/jamia/ocx068
- A. O. Kwok & S. G. Koh. (2019). Is blockchain technology a watershed for tourism development?. Current Issues in Tourism, 22(20), 2447-2452. DOI : 10.1080/13683500.2018.1513460
- H. Si, C. Sun, Y. Li, H. Qiao & L. Shi. (2019). IoT information sharing security mechanism based on blockchain technology. Future Generation Computer Systems, 101, 1028-1040. DOI : 10.1016/j.future.2019.07.036
- J. Abraham, D. Higdon, J. Nelson & J. Ibarra. (2018). Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU Data Science Review, 1(3), 1.
- Y. B. Kim, J. G. Kim, W. Kim, J. H. Im, T. H. Kim, S. J. Kang & C. H. Kim. (2016). Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PloS one, 11(8), e0161197. DOI : 10.1371/journal.pone.0161197
- L. Kristoufek. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific reports, 3(1), 1-7. DOI : 10.1038/srep03415
- H. Jang & J. Lee. (2017). An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information. Ieee Access, 6, 5427-5437. DOI : 10.1109/ACCESS.2017.2779181
- D. C. Mallqui & R. A. Fernandes. (2019). Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Applied Soft Computing, 75, 596-606. DOI : 10.1016/j.asoc.2018.11.038
- M. Saad, J. Choi, D. Nyang, J. Kim & A. Mohaisen. (2019). Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE Systems Journal, 14(1), 321-332. DOI : 10.1109/JSYST.2019.2927707
- Y. Liu, Y. Hei, T. Xu & J. Liu. (2020). An Evaluation of Uncle Block Mechanism Effect on Ethereum Selfish and Stubborn Mining Combined With an Eclipse Attack. IEEE Access, 8, 17489-17499. DOI : 10.1109/ACCESS.2020.2967861
- W. Foxley. (11, Augest 2020). Ethereum Classic's Terrible, Horrible, No Good, Very Bad Week. Coindesk. https://www.coindesk.com/ethereum-classics-terrible-horrible-no-good-very-bad-week
- H. M. Kim, G. W. Bock & G. Lee. (2019). Predicting Ethereum Prices using Machine Learning and Block Chain Information. AMCIS 2019 Proceeding. (pp. 1-5).
- L. Rokach. (2010). Pattern classification using ensemble methods. Singapore : World Scientific. DOI : 10.1142/7238
- A. M. Antonopoulos. (2014). Mastering Bitcoin: Unlocking Digital Cryptocurrencies. USA : O'Reilly Media Inc.
- M. M. Islam & K. Murase. (2001). A new algorithm to design compact two-hidden-layer artificial neural networks. Neural Networks, 14(9), 1265-1278. DOI : 10.1016/S0893-6080(01)00075-2
- K. P. Murphy. (2012). Machine learning: a probabilistic perspective. London : MIT press.
- C. Cortes & V. Vapnik. (1995). Support-vector networks. Machine learning, 20(3), 273-297. DOI : 10.1007/BF00994018
- P. Wang. (2011). Pricing currency options with support vector regression and stochastic volatility model with jumps. Expert Systems with Applications, 38(1), 1-7. DOI : 10.1016/j.eswa.2010.05.037
- N. F. F. Da Silva, E. R. Hruschkaa & E. R. Hruschka. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66, 170-179. DOI : 10.1016/j.dss.2014.07.003
- A. S. Assiri, S. Nazir & S. A. Velastin, (2020). Breast Tumor Classification Using an Ensemble Machine Learning Method. Journal of Imaging, 6(6), 39. DOI : 10.3390/jimaging6060039
- K. An & J. Meng. (2010). Voting-averaged combination method for regressor ensemble. In International Conference on Intelligent Computing (pp. 540-546). Berlin : Springer.
- G. Wang, J. Sun, J. Ma, K. Xu & J. Gu. (2014). Sentiment classification: The contribution of ensemble learning. Decision support systems, 57, 77-93. DOI : 10.1016/j.dss.2013.08.002
- F. Divina, A. Gilson, F. Gomez-Vela, M. Garcia Torres & J. F. Torres. (2018). Stacking ensemble learning for short-term electricity consumption forecasting. Energies, 11(4), 949. DOI : 10.3390/en11040949
- X. Hu, H. Zhang, H. Mei, D. Xiao, Y. Li & M. Li. (2020). Landslide Susceptibility Mapping Using the Stacking Ensemble Machine Learning Method in Lushui, Southwest China. Applied Sciences, 10(11), 4016. DOI : 10.3390/app10114016
- H. Lee, S. H. Chung & E. J. Choi. (2016). A case study on machine learning applications and performance improvement in learning algorithm. Journal of Digital Convergence, 14(2), 245-258. DOI : 10.14400/JDC.2016.14.2.245