DOI QR코드

DOI QR Code

The Antioxidation Effect of Mutimo cylindricus Extract and Its Influence on Cell Bioactivity

회초리말(Mutimo cylindricus)의 항산화, 항염 및 미백 활성

  • Park, Sang-Nam (Department of Clinical Laboratory Science, KyungDong University) ;
  • Lee, Ok-Hee (Department of Health Administration, KyungDong University)
  • 박상남 (경동대학교 임상병리학과) ;
  • 이옥희 (경동대학교 보건관리학과)
  • Received : 2020.09.14
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

The objective of this study was to evaluate functionality of Mutimo cylindricus as a cosmetic ingredient, one of the brown algae. The M. cylindricus 70% ethanol extract was manufactured for antioxidant measurement. DPPH and ABTS methods were used to measure antioxidants, and its EC50 values were 2.040 and 2.182 mg/mL in each experiment. The measurement of total polyphenol contents and reducing power showed total polyphenol content of 103 mg gallic acid/g extract and reducing power of 134 mg ascorbic acid/g extract. To measure cell toxicity, MTT method was used, and its result showed that the extract was not cytotoxic. And it has anti-inflammatory and whitening activity at concentrations of 100 ㎍/mL. The result confirmed that M. cylindricus extract is available as a cosmetic material with whitening and anti-inflammatory properties.

본 연구는 갈조류 중 하나인 회초리말의 기능성 화장품 원료로서 기능성을 알아보기 위하여, 항산화 실험 및 세포실험을 실시하였다. 항산화능 측정을 위해 회초리말을 70% 에탄올로 추출물을 제조하였다. 항산화 측정에는 DPPH와 ABTS 법을 사용하였으며, 각 실험에서 EC50값이 2.040과 2.182 mg/mL로 나타났다. 폴리페놀 함량과 환원능 측정에서는 103 mg gallic acid/g extract의 폴리페놀 함량과 134 mg ascorbic acid/g extract의 환원능이 나타났다. 세포실험에서는 MTT 법을 사용하여 해당 추출물이 세포독성이 없음을 나타내었으며, 100 ㎍/mL 농도에서 항염능과 미백능을 나타내었다. 결과적으로 수송나물 추출물은 미백 및 항염능을 가진 화장품 소재로서 사용가능함을 확인하였다.

Keywords

References

  1. G. T. Jeong & D. H. Park. (2014). Effect of Pretreatment Method on Lipid Extraction from Enteromorpha intestinalis. Korean Society for Biotechnology and Bioengineering Journal, 29(1), 22-28. DOI : 10.7841/ksbbj.2014.29.1.22
  2. C. S. Kumar, P. Ganesan, P. V. Suresh & N. Bhaskar. (2008). Seaweeds as a source of nutritionally beneficial compounds-a review. Journal of Food Science and Technology, 45(1), 1.
  3. Y. E. Jeon, F. Y. Xing, S. S. Lim, C. K. Chung & I. J. Kang. (2012). Antioxidant Activities and Acetylcholinesterase Inhibitory Activities from Seaweed Extracts. Journal of the Korean Society of Food Science and Nutrition, 41(4), 443-449. DOI : 10.3746/jkfn.2012.41.4.443
  4. Y. H. Park, Y. J. Kang, J. H. Pyeun & H. K. Oh. (1976). Chemical Composition of Unexpoited Algae and Extraction of Algal Protein = Utilization of Unexpoited Algae for Food or Other Industrial Uses. Journal of the Korean Fisheries Society, 9(3), 155-162.
  5. N. Y. Park, I. S. Kim & Y. J. Jeong. (2008). Effects of Extraction Conditions on the Componential Extraction of Brown Seaweed (Undaria pinnatifida). Preventive Nutrition and Food Science, 13(4), 321-326. DOI : 10.3746/jfn.2008.13.4.321
  6. C. H. Lee, Y. N. Park & S. G. Lee. (2020). Analysis and Comparison of Bioactive Compounds and Total Antioxidant Capabilities of Korean Brown Algae. Korean Journal of Food Science and Technology, 52(1), 54-59. DOI : 10.9721/KJFST.2020.52.1.54
  7. P. Kumari, C. R. K. Reddy & B. Jha. (2011). Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Analytical biochemistry, 415(2), 134-144. DOI : 10.1016/j.ab.2011.04.010
  8. B. Poljsak & R. Dahmane. (2012). Free radicals and extrinsic skin aging. Dermatology research and practice, 2012(1), 1-4. DOI : 10.1155/2012/135206
  9. B. Poljsak, R. G. Dahmane & A. Godic. (2012). Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat, 21(2), 33-36. DOI : 10.2478/v10162-012-0012-5
  10. H. Kawai, K. Kogishi, Y. Hanyuda & T. Kitayama. (2012). Taxonomic revision of the genus Cutleria proposing a new genus Mutimo to accommodate M. cylindricus (Cutleriaceae, Phaeophyceae). Phycological research, 60(3), 241-248. DOI : 10.1111/j.1440-1835.2012.00651.x
  11. D. B. Shin, E. H. Han & S. S. Park. (2014). Cytoprotective Effects of Phaeophyta Extracts from the Coast of Jeju Island in HT-22 Mouse Neuronal Cells. Journal of the Korean Society of Food Science and Nutrition, 43(2), 224-230. DOI : 10.3746/jkfn.2014.43.2.224
  12. F. Ferreres, G. Lopes, A. Gil-Izquierdo, P. B. Andrade, C. Sousa, T. Mouga & P. Valentão. (2012). Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine drugs, 10(12), 2766-2781. DOI : 10.3390/md10122766
  13. M. S. Blois. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  14. N. J. Miller & C. A. Rice-Evans. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free radical research, 26(3), 195-199. DOI : 10.3109/10715769709097799
  15. S. B. Kedare & R. P. Singh. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology, 48(4), 412-422. DOI : 10.1007/s13197-011-0251-1
  16. V. N. Gladyshev. (2014). The free radical theory of aging is dead. Long live the damage theory!. Antioxidants & redox signaling, 20(4), 727-731. DOI : 10.1089/ars.2013.5228
  17. J. Imai, N. Ide, S. Nagae, T. Moriguchi, H. Matsuura & Y. Itakura. (1994). Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta medica, 60(5), 417-420. DOI : 10.1055/s-2006-959522
  18. B. Halliwell, R. Aeschbach, J. Loliger & O. I. Aruoma. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601-617. DOI : 10.1016/0278-6915(95)00024-V
  19. N. S. Rajurkar & S. M. Hande. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian journal of pharmaceutical sciences, 73(2), 146. DOI : 10.4103/0250-474x.91574
  20. L. Wang, Y. R. Cui, H. W. Yang, H. G. Lee, J. Y. Ko & Y. J. Jeon. (2019). A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells. Fisheries and Aquatic Sciences, 22(1), 1-8. DOI : 10.1186/s41240-019-0126-3
  21. S. J. Heo et al. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8-9), 2045-2051. DOI : 10.1016/j.fct.2010.05.003