DOI QR코드

DOI QR Code

Evaluation of the Utility of Self Produced MRI Radiofrequency Shielding Material

자체 제작한 자기공명영상 고주파 차폐체의 유용성 평가

  • Lee, Jin-Hoe (Department of Radiology, Konyang University Hospital) ;
  • Lee, Bo-Woo (Department of Radiological Science, Gimcheon University)
  • 이진회 (건양대학교병원 영상의학과) ;
  • 이보우 (김천대학교 방사선학과)
  • Received : 2020.09.29
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

This paper proposes a better shielding method to over sampling technique. The new method uses aluminum foil for RF shielding. As a result of the phantom test, when the over-sampling technique was applied, the aliasing artifact was reduced by about 94% compared to before the application, and the case where the aluminum shielding band was applied was also reduced by about 92% compared to before application. In addition, the scan time also increased by more than 3 times in the case of the over-sampling technique, while it was found that there was no change from before the application of the aluminum shielding band Therefore, it was confirmed that the shielding band using aluminum foil can effectively remove aliasing artifacts without increasing the scan time..

자기공명영상 고주파를 차단할 수 있는 금속물질 중 자장에 영향을 받지 않으며 가격이 저렴하고 주위에서 쉽게 구할 수 있는 알루미늄 호일을 이용하여 차폐체를 제작하였다. Phantom 실험 결과 over-sampling 기법을 적용한 경우 적용 전보다 aliasing artifact가 약 94% 감소하였고, 알루미늄 차폐체를 적용한 경우도 적용 전 보다 약 92% 감소하였다. 그리고 scan time도 over-sampling 기법의 경우 적용 전보다 약 3배이상 증가한 반면, 알루미늄 차폐체의 경우는 적용 전과 변화가 없는 것으로 나타났다. 따라서 알루미늄 호일을 이용한 차폐체도 기존의 흡수재 및 차폐체들과 마찬가지로 scan time의 증가 없이 aliasing artifact를 효율적으로 제거할 수 있는 것을 확인하였다.

Keywords

References

  1. Korean Society of Magnetic Resonance Imaging. (2019). Textbook of Magnetic Resonance Imaging. Seoul : Chung Ku Publisher
  2. J. C. Sharp, S. B. King, Q. Deng, V. Volotovskyy & B. Tomanek. (2013). Highresolution MRI encoding using radiofrequency phase gradients. NMR in Biomedicine, 26(11), 1602-1607. DOI : 10.1002/nbm.3023
  3. J. H. Kim. (2010). Introduction to high field strength magnetic resonance imaging. Korean Medical Assoc, 53(12), 1055-1058. DOI : 10.5124/jkma.2010.53.12.1055
  4. E. H. Goo. (2016). Assesment Of Image Quality in the Abdominal Magnetic Resonance Imaging: Comparison with 1.5 T and 3.0 T. Journal of the Korea Society of Radiology, 10(5), 367-373. DOI : 10.7742/jksr.2016.10.5.367
  5. M. A. Bernstein, K. F. King & X. J. Zhou. (2004). Handbook of MRI Pulse Sequences. Burlington USA : Elsevier Academic Press.
  6. L. M. White & K. A. Buckwalter. (2002). Technical Considerations: CT and MR Imaging in the Postoperative Orthopedic Patient. Semin Musculoskelet Radiol, 6(1), 005-018. DOI : 10.1055/s-2002-23160
  7. G. Iannucci, L. Minicucci, M. Rodegher, M. P. Sormani, G. Comi & M. Filippi. (1999). Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T1, T2 and MT histograms. Journal of the Korea Convergence Society, 1(1), 83-91. DOI : 10.15207/JKCS.2010.1.1.083
  8. K. Katarzyna & B. F. Monika. (2015). Artifacts in Magnetic Resonance Imaging. Polish Journal of Radiology, 80, 93-106. DOI : 10.12659/PJR.892628
  9. S. J. Ko. (2010). Metal Artifact Caused by Magnetic Field Strength and Sequence on T1WI-MRI. Journal of Korea Contents Association, 10(9), 302-308. DOI: 10.5392/JKCA.2010.10.9.302
  10. H. H. Hu, A. J. Madhuranthakam, D. G. Kruger, J. F. Glockner & S. J. Riederer. (2005). Variable Field of View for Spatial Resolution Improvement in Continuously Moving Table Magnetic Resonance Imaging. Magn Reson Med, 54(1), 146-151. DOI : 10.1002/mrm.20509
  11. W. J. Choi & D. H. Kim. (2019). Reduction of Artifacts in Magnetic Resonance Imaging with Diamagnetic Substance. Journal of the Korean Society of Radiology, 13(4), 581-588. DOI : 10.7742/jksr.2019.13.4.581
  12. L. Chen, L. Bao, J. Li, S. Cai & C. Cai, Z. Chen. (2013). An aliasing artifacts reducing approach with random undersampling for spatiotemporally encoded single-shot MRI. Journal of Magnetic Resonance, 237, 115-124. DOI : 10.1016/j.jmr.2013.10.005
  13. S. B. Lee & G. R. Choi. (2012). Evaluation of UTE Signal Acquisition Efficacy in Molecular MRI. Journal of the Korean Society of Radiology, 6(4), 305-311. DOI : 10.7742/jksr.2012.6.4.305
  14. L. Kang, K. W. Choi, H. B. Lee, S. Na, S. W. Yang & D K. Seo. (2017). An Effectiveness of Radio Frequcncy(RF) Shielding Fibers and Customized RF Protective Clothing Applied to the Whole Body in Partial Area Imaging Working as a RF Absorber. Journal of the Korean Society of MR Technology, 27(2), 45-57. DOI : 10.31159/ksmrt.2017.27.2.45
  15. A. H. Brian, W. W. Pauline, B. P. Kim, M. P. John, M. K. Kevin & E. G. Garry. (2011). Metal-Induced Artifacts in MRI. American Journal of Roentgenology, 197(3), 547-555. DOI : 10.2214/AJR.11.7364
  16. L. Wenmiao, B. P. Kim, E. G. Garry, M. P. John & A. H. Brian. (2009). SEMAC: Slice encoding for metal artifact correction in MRI. Magnetic Resonance in Medicine, 62(1), 66-76. DOI : 10.1002/mrm.21967
  17. G. P. James. (1995). Spatial Encoding and Reconstruction in MRI with Quadratic Phase Profiles. Magnetic Resonance in Medicine, 33(1), 24-33. DOI : 10.1002/mrm.1910330105
  18. Health Survey. The Korean Journal of Health Service Management, 7(3), 95-109. DOI: 10.12811/kshsm.2013.7.3.095.