References
- F. Bruno, F. Greco, and M. Ventrucci, Non-parametric regression on compositional covariates using Bayesian P-splines, Stat. Methods Appl. 25 (2016), no. 1, 75-88. https://doi.org/10.1007/s10260-015-0339-2
- T. K. Chandra and A. Goswami, Cesaro α-integrability and laws of large numbers. II, J. Theoret. Probab. 19 (2006), no. 4, 789-816. https://doi.org/10.1007/s10959-006-0038-x
- P. Chen and S. H. Sung, A Spitzer-type law of large numbers for widely orthant dependent random variables, Statist. Probab. Lett. 154 (2019), 108544, 8 pp. https://doi.org/10.1016/j.spl.2019.06.020
- W. Chen, Y. Wang, and D. Cheng, An inequality of widely dependent random variables and its applications, Lith. Math. J. 56 (2016), no. 1, 16-31. https://doi.org/10.1007/s10986-016-9301-8
- Z. Chen, H. Wang, and X. Wang, The consistency for the estimator of nonparametric regression model based on martingale difference errors, Statist. Papers 57 (2016), no. 2, 451-469. https://doi.org/10.1007/s00362-015-0662-6
- T. C. Christofides and E. Vaggelatou, A connection between supermodular ordering and positive/negative association, J. Multivariate Anal. 88 (2004), no. 1, 138-151. https://doi.org/10.1016/S0047-259X(03)00064-2
- L. Ding and P. Chen, A note on the consistency of wavelet estimators in nonparametric regression model under widely orthant dependent random errors, Math. Slovaca 69 (2019), no. 6, 1471-1484. https://doi.org/10.1515/ms-2017-0323
- Y. Fan, Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case, J. Multivariate Anal. 33 (1990), no. 1, 72-88. https://doi.org/10.1016/0047-259X(90)90006-4
- A. A. Georgiev, Local properties of function fitting estimates with application to system identification, in Mathematical statistics and applications, Vol. B (Bad Tatzmannsdorf, 1983), 141-151, Reidel, Dordrecht, 1985.
- I. Grama and M. Nussbaum, Asymptotic equivalence for nonparametric regression, Math. Methods Statist. 11 (2002), no. 1, 1-36.
- T. Hu, Negatively superadditive dependence of random variables with applications, Chinese J. Appl. Probab. Statist. 16 (2000), no. 2, 133-144. https://doi.org/10.3969/j.issn.1001-4268.2000.02.003
- K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295. https://doi.org/10.1214/aos/1176346079
- D. Landers and L. Rogge, Laws of large numbers for uncorrelated Cesaro uniformly integrable random variables, Sankhya Ser. A 59 (1997), no. 3, 301-310.
- H.-Y. Liang and B.-Y. Jing, Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences, J. Multivariate Anal. 95 (2005), no. 2, 227-245. https://doi.org/10.1016/j.jmva.2004.06.004
- L. Liu, Precise large deviations for dependent random variables with heavy tails, Statist. Probab. Lett. 79 (2009), no. 9, 1290-1298. https://doi.org/10.1016/j.spl.2009.02.001
- G. G. Roussas, Consistent regression estimation with fixed design points under dependence conditions, Statist. Probab. Lett. 8 (1989), no. 1, 41-50. https://doi.org/10.1016/0167-7152(89)90081-3
- G. G. Roussas, L. T. Tran, and D. A. Ioannides, Fixed design regression for time series: asymptotic normality, J. Multivariate Anal. 40 (1992), no. 2, 262-291. https://doi.org/10.1016/0047-259X(92)90026-C
- A. Shen, Complete convergence for weighted sums of END random variables and its application to nonparametric regression models, J. Nonparametr. Stat. 28 (2016), no. 4, 702-715. https://doi.org/10.1080/10485252.2016.1225050
- A. Shen and A. Volodin, Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications, Metrika 80 (2017), no. 6-8, 605-625. https://doi.org/10.1007/s00184-017-0618-z
- A. Shen and C. Wu, Complete q-th moment convergence and its statistical applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 1, Paper No. 35, 25 pp. https://doi.org/10.1007/s13398-019-00778-2
- W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.
- S. H. Sung, S. Lisawadi, and A. Volodin, Weak laws of large numbers for arrays under a condition of uniform integrability, J. Korean Math. Soc. 45 (2008), no. 1, 289-300. https://doi.org/10.4134/JKMS.2008.45.1.289
- L. Tran, G. Roussas, S. Yakowitz, and B. Truong Van, Fixed-design regression for linear time series, Ann. Statist. 24 (1996), no. 3, 975-991. https://doi.org/10.1214/aos/1032526952
- K. Wang, Y. Wang, and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodol. Comput. Appl. Probab. 15 (2013), no. 1, 109-124. https://doi.org/10.1007/s11009-011-9226-y
- X. Wang, Upper and lower bounds of large deviations for some dependent sequences, Acta Math. Hungar. 153 (2017), no. 2, 490-508. https://doi.org/10.1007/s10474-017-0764-9
- X. Wang and S. Hu, Weak laws of large numbers for arrays of dependent random variables, Stochastics 86 (2014), no. 5, 759-775. https://doi.org/10.1080/17442508.2013.879140
- X. Wang, C. Xu, T. Hu, A. Volodin, and S. Hu, On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models, TEST 23 (2014), no. 3, 607-629. https://doi.org/10.1007/s11749-014-0365-7
- Y. Wang, Z. Cui, K. Wang, and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, J. Math. Anal. Appl. 390 (2012), no. 1, 208-223. https://doi.org/10.1016/j.jmaa.2012.01.025
- Q. Y. Wu, Probability Limit Theory for Mixing Sequences, Science Press of China, Beijing, 2006.
- Y. Wu, X. J. Wang, and A. Rosalsky, Complete moment convergence for arrays of rowwise widely orthant dependent random variables, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 10, 1531-1548. https://doi.org/10.1007/s10114-018-7173-z
- M. M. Xi, R. Wang, Z. Y. Cheng, and X. J. Wang, Some convergence properties for partial sums of widely orthant dependent random variables and their statistical applications, Statistical Papers (2018). https://doi.org/10.1007/s00362-018-0996-y