DOI QR코드

DOI QR Code

A NOTE ON w-GD DOMAINS

  • Zhou, Dechuan (School of Science Southwest University of Science and Technology)
  • Received : 2019.11.16
  • Accepted : 2020.08.21
  • Published : 2020.11.30

Abstract

Let S and T be w-linked extension domains of a domain R with S ⊆ T. In this paper, we define what satisfying the wR-GD property for S ⊆ T means and what being wR- or w-GD domains for T means. Then some sufficient conditions are given for the wR-GD property and wR-GD domains. For example, if T is wR-integral over S and S is integrally closed, then the wR-GD property holds. It is also given that S is a wR-GD domain if and only if S ⊆ T satisfies the wR-GD property for each wR-linked valuation overring T of S, if and only if S ⊆ (S[u])w satisfies the wR-GD property for each element u in the quotient field of S, if and only if S𝔪 is a GD domain for each maximal wR-ideal 𝔪 of S. Then we focus on discussing the relationship among GD domains, w-GD domains, wR-GD domains, Prüfer domains, PνMDs and PwRMDs, and also provide some relevant counterexamples. As an application, we give a new characterization of PwRMDs. We show that S is a PwRMD if and only if S is a wR-GD domain and every wR-linked overring of S that satisfies the wR-GD property is wR-flat over S. Furthermore, examples are provided to show these two conditions are necessary for PwRMDs.

Keywords

References

  1. G. W. Chang, *-Noetherian domains and the ring D[X]N*, J. Algebra 297 (2006), no. 1, 216-233. https://doi.org/10.1016/j.jalgebra.2005.08.020
  2. G. W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
  3. G. W. Chang and M. Fontana, Uppers to zero in polynomial rings and Prufer-like domains, Comm. Algebra 37 (2009), no. 1, 164-192. https://doi.org/10.1080/00927870802243564
  4. J. Dawson and D. E. Dobbs, On going down in polynomial rings, Canadian J. Math. 26 (1974), 177-184. https://doi.org/10.4153/CJM-1974-017-9
  5. D. E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515-519. https://doi.org/10.2307/2039585
  6. D. E. Dobbs, On going down for simple overrings. II, Comm. Algebra 1 (1974), 439-458. https://doi.org/10.1080/00927877408548715
  7. D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. https://doi.org/10.1080/00927878908823879
  8. D. E. Dobbs and I. J. Papick, On going-down for simple overrings. III, Proc. Amer. Math. Soc. 54 (1976), 35-38. https://doi.org/10.2307/2040743
  9. D. E. Dobbs and P. Sahandi, Going-down and semistar operations, J. Algebra Appl. 8 (2009), no. 1, 83-104. https://doi.org/10.1142/S0219498809003205
  10. D. E. Dobbs and P. Sahandi, On semistar Nagata rings, Prufer-like domains and semistar going-down domains, Houston J. Math. 37 (2011), no. 3, 715-731.
  11. R. Gilmer, Multiplicative Ideal Theory, corrected reprint of the 1972 edition, Queen's Papers in Pure and Applied Mathematics, 90, Queen's University, Kingston, ON, 1992.
  12. I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, MA, 1970.
  13. Max. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
  14. F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. https://doi.org/10.2307/2033925
  15. P. Sahandi and N. Shirmohammadi, On a subclass of semistar going-down domains, Int. Electron. J. Algebra 14 (2013), 53-68.
  16. F. Wang, On induced operations and UMT-domains, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 27 (2004), no. 1, 1-9.
  17. F. Wang, w-coherence in Milnor squares, Acta Math. Sinica (Chin. Ser.) 55 (2012), no. 1, 65-76.
  18. F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  19. S. Xing, On w-operation and the theory of extension of commutative rings, Ph.D. Thesis Sichuan Normal Univ., 2015.
  20. S. Xing and F. Wang, Overrings of Prufer v-multiplication domains, J. Algebra Appl. 16 (2017), no. 8, 1750147, 10 pp. https://doi.org/10.1142/S021949881750147X