DOI QR코드

DOI QR Code

Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S)

황화수소(H2S) 감지를 위한 아세트산 납이 침염된 폴리에스터(PET) 섬유 기반의 변색성 센서

  • Lee, Junyeop (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Do, Nam Gon (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Jeong, Dong Hyuk (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Dong Geon (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • An, Hee Kyung (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Kong, Seong Ho (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Jung, Daewoong (Safety System R&D Group, Korea Institute of Industrial Technology)
  • 이준엽 (한국생산기술연구원 안전시스템연구그룹) ;
  • 도남곤 (한국생산기술연구원 안전시스템연구그룹) ;
  • 정동혁 (한국생산기술연구원 안전시스템연구그룹) ;
  • 정동건 (한국생산기술연구원 안전시스템연구그룹) ;
  • 안희경 (한국생산기술연구원 안전시스템연구그룹) ;
  • 공성호 (경북대학교 전자전기공학부) ;
  • 정대웅 (한국생산기술연구원 안전시스템연구그룹)
  • Received : 2020.09.07
  • Accepted : 2020.09.29
  • Published : 2020.09.30

Abstract

In this study, the colorimetric sensor, polyester (PET) fabric dyed with lead (II) acetate (Pb(C2H3O2)2), was fabricated and characterized for the detection of the hydrogen sulfide (H2S). The surface morphology of the fabric was determined using scanning electron microscope and energy-dispersive X-ray spectroscopy. The optical properties of the fabric were evaluated by measuring the variation in the blue value of an RGB sensor. The fabric showed a significant color change, high linearity (R2 : 0.98256), and fast response time (< 1.0 s) when exposed to H2S. This is because the sensor is highly porous and permeable to the gas. The fabric can not only be used as a hydrogen sulfide sensor but also be used to detect and prevent H2S influx using sticky tape on pipelines.

Keywords

References

  1. L. Zhang, P. De Schryver, B. De Gusseme, W. De Muynck, N. Boon, and W. Verstraete, "Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review", Water Res. Vol. 42, No. 1-2, pp. 1-12, 2008. https://doi.org/10.1016/j.watres.2007.07.013
  2. http://toxnet.nlm.nih.gov/ (retrieved on Jan., 2011).
  3. http://www.osha.-gov/ (retrieved on Oct., 2005)
  4. https://www.atsdr.cdc.gov/ (retrieved on Dec., 2016).
  5. M. D. Brown, J. R. Hall, and M. H. Schoenfsch, "A direct and selective electrochemical hydrogen sulfide sensor", Anal. Chim. Acta, Vol 1045, No. 3, pp. 67-76, 2019. https://doi.org/10.1016/j.aca.2018.08.054
  6. K. Vikrant, V. Kumar, Y.S. Ok, K.H. Kim, and A. Deep, "Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide", Trends Anal. Chem., Vol. 105, pp. 263-281, 2018. https://doi.org/10.1016/j.trac.2018.05.013
  7. K. Crowley, A. Morrin, R.L. Shepherd, M. Panhuis, G.G. Wallace, M.R. Smyth, and A. J. Killard, "Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide", IEEE J. Sens., Vol. 10, No. 9, pp. 1419-1426, 2010. https://doi.org/10.1109/JSEN.2010.2044996
  8. Daniel L.A. Fernandes, Tony A. Rolo, Joao A.B.P. Oliveira, M. Teresa S.R. Gomes, "A new analytical system, based on an acoustic wave sensor, for halitosis evaluation", Sens. Actuators B, Vol. 136, No. 1, pp. 73-79, 2009. https://doi.org/10.1016/j.snb.2008.10.037
  9. W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, "Bilayer Structures of NiO_{x} and Pd in Surface Acoustic Wave and Electrical Gas Sensor Systems", Acta Phys. Pol. A, Vol. 116, No. 3, pp. 315-320, 2009. https://doi.org/10.12693/APhysPolA.116.315
  10. L. Engel, K. R. Tarantik, C. Pannek, and J. Wollenstein, "Screen-Printed Sensors for Colorimetric Detection of Hydrogen Sulfide in Ambient Air", Sensors, Vol. 19, No. 5, pp. 1182, 2019. https://doi.org/10.3390/s19051182
  11. G. Korotcenkov, I. Blinov, V. Brinzari, and J.R. Stetter, "Effect of air humidity on gas response of SnO2 thin film ozone sensors", Sens. Actuators B, Vol. 122, No. 2, pp. 519-526, 2007. https://doi.org/10.1016/j.snb.2006.06.025
  12. J. S. Kim, C. W. Na, C. H. Kwak, H. Y. Lli, J. W. Yoon, J. H. Kim, S. Y. Jeong, J. H. Lee, "Humidity-Independent Gas Sensors Using Pr-Doped In2O3 Macroporous Spheres: Role of Cyclic Pr3+/Pr4+ Redox Reactions in Suppression of Water-Poisoning Effect", ACS Appl. Mater. Interfaces, Vol. 11, No. 28, pp. 25322-25329, 2019. https://doi.org/10.1021/acsami.9b06386
  13. Z. Ling, and C. Leach, "The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor", Sens. Actuators B, Vol. 102, No. 1, pp. 102-106, 2004. https://doi.org/10.1016/j.snb.2004.02.017