DOI QR코드

DOI QR Code

Optoelectronic Properties of Sol-gel Processed SnO2 Thin Film Transistors

졸-겔 공법으로 제작된 SnO2 박막 트랜지스터의 광전기적 특성

  • Lee, Changmin (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Jang, Jaewon (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 이창민 (경북대학교 IT 대학 전기전자공학부) ;
  • 장재원 (경북대학교 IT 대학 전기전자공학부)
  • Received : 2020.09.03
  • Accepted : 2020.09.09
  • Published : 2020.09.30

Abstract

In this study, a highly crystalline SnO2 thin film was formed using a sol-gel process. In addition, a SnO2 thin-film transistor was successfully fabricated. The fabricated SnO2 thin-film transistor exhibited conventional n-type semiconductor properties, with a mobility of 0.1 cm2 V-1 s-1, an on/off current ratio of 1.2 × 105, and a subthreshold swing of 2.69. The formed SnO2 had a larger bandgap (3.95 eV) owing to the bandgap broadening effect. The fabricated photosensor exhibited a responsivity of 1.4 × 10-6 Jones, gain of 1.43 × 107, detectivity of 2.75 × 10-6 cm Hz1/2 W-1, and photosensitivity of 4.67 × 102.

Keywords

References

  1. M. Razeghi, and A. Rogalski, "A. Semiconductor ultraviolet detectors", J. Appl. Phys., Vol. 79, No. 10, pp. 7433-7473, 1996. https://doi.org/10.1063/1.362677
  2. T. Zhai, "Recent developments in one-dimensional inorganic nanostructures for photodetectors", Adv. Funct. Mater., Vol. 20, No. 24, pp. 4233-4248, 2010. https://doi.org/10.1002/adfm.201001259
  3. Y. Kim, S. J. Kim, S. Cho, B. H. Hong, and D. Jang, "Highperformance ultraviolet photodetectors based on solutiongrown ZnS nanobelts sandwiched between graphene layers", Sci. Rep., Vol. 5, pp. 12345(1)-12345(8), 2015. https://doi.org/10.1038/srep12345
  4. W. Y. Lee, S. Ha, H. Lee, J. H. Bae, B. Jang, H. J. Kwon, Y. Yun, S. Lee, and J. Jang, "High Detectivity Flexible Near Infrared Photodetector Based on Chalcogenide Ag2Se Nanoparticles", Adv. Opt. Mater., Vol. 7, pp. 1900812(1)-1900812(7), 2019.
  5. Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, "Solution-processed ultraviolet photodetectors based on colloidal ZnO Nanoparticles", Nano Lett., Vol. 8, No. 6, pp. 1649-1653, 2008. https://doi.org/10.1021/nl0803702
  6. S. Rahendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumanathan, "Ce3+ ion induced visible light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite", Sci. Rep., Vol. 6, pp. 31641(1)-31641(11), 2016. https://doi.org/10.1038/srep31641
  7. B. Jang, T. Kim, S. Lee, W. Y. Lee, H. Kang, C. S. Cho, and J. Jang, "High Performance Ultrathin SnO2 Thin Film Transistor by Sol-gel Method", IEEE Electron Device Lett., Vol. 39, No. 8, pp. 1179-1182, 2018. https://doi.org/10.1109/LED.2018.2849689
  8. J. Jang, H. Kang, H. C. N. Chakravarthula, and V. Subramanian, "Fully Inkjet-Printed Transparent Oxide Thin Film Transistors Using a Fugitive Wettability Switch", Adv. Electron. Mater., Vol. 1, pp.1500086(1)-1500086(7), 2015. https://doi.org/10.1002/aelm.201500086
  9. W. J. Scheideler, J. Jang, M. A. Ul Karim, R. Kitsomboonloha, A. Zeumault, and V. Subramanian, "GravurePrinted Sol-Gels on Flexible Glass: A Scalable Route to Additively Patterned Transparent Conductors", ACS. Appl. Mater. Interfaces, Vol. 7, No. 23, pp. 12679-12687, 2015. https://doi.org/10.1021/acsami.5b00183
  10. K. J. Button, C. G. Fonstad, and W. Dreybrodt, ''Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance", Phys. Rev. B- Condens. Matter, Vol. 4, No. 12, pp. 4539-4542, 1971. https://doi.org/10.1103/PhysRevB.4.4539
  11. O. Bierwagen and J. S. Speck, ''High Electron Mobility In2O3 (001) and (111) Thin Films with Nondegenerate Electron Concentration", Appl. Phys. Lett., Vol. 97, No. 7, pp. 072103(1)-072103(3), 2010. https://doi.org/10.1063/1.3480416
  12. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, "Electrical Properties of Bulk ZnO", Solid State Commun., Vol. 105, No. 6, pp. 399-401, 1998. https://doi.org/10.1016/S0038-1098(97)10145-4
  13. S. Ghosh, K. Das, K. Chakrabarti, and S. K. De, "Effect of oleic acid ligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2 quantum dots", Dalton Trans., Vol. 42, No. 10, pp. 3434-3446, 2013. https://doi.org/10.1039/C2DT31764H
  14. B. Jang, T. Kim, S. Lee, W. Y. Lee, and J. Jang, "Schottky Nature of Au/SnO2 Ultrathin Film Diode Fabricated Using Sol-gel Process", IEEE Electron Device Lett., Vol. 39, No. 11, pp. 1732-1735, 2018. https://doi.org/10.1109/LED.2018.2871211
  15. Y. Yun, A. Choi, S. G. Hahm, J. W. Chung, Y. U. Lee, J. Y. Jung, J. Y. Kim, J. I. Park, S. Lee, and J. Jang, "Enhanced Performance of Thiophene-rich Heteroacene, Dibenzothiopheno [6,5-b:6',5'-f]thieno[3,2-b] Thiophene Thin Film Transistor with MoOx Hole Injection Layers", IEEE Electron Device Lett., Vol. 38, No. 5, pp. 649-652, 2017. https://doi.org/10.1109/LED.2017.2687941
  16. J. C. Moore and C. V. Thompson, "A Phenomenological Model for the Photocurrent Transient Relaxation Observed in ZnO-Based Photodetector Devices", Sensors, Vol. 13, No. 8, pp. 9921-9940, 2013. https://doi.org/10.3390/s130809921
  17. T. Kim, B. Jang, S. Lee, W. Lee, and J. Jang, "Improvement in Negative Bias Stress Stability of Sol-gel Processed Mg doped In2O3 Thin Film Transistors", IEEE Electron Device Lett., Vol. 39, No. 12, pp. 1872-1875, 2018. https://doi.org/10.1109/LED.2018.2873622
  18. W. Y. Lee, S. Ha. H. Lee, J. H. Bae, I. M. Kang, K. Kim, and J. Jang, "Effect of Mg Doping on the Electrical Performance of a Sol-gel Processed Thin Film Transistors", Electronics, Vol. 9, No. 3, pp. 523-532, 2020. https://doi.org/10.3390/electronics9030523