DOI QR코드

DOI QR Code

Deadbeat predictive direct power control of interleaved buck converter-based fast battery chargers for electric vehicles

  • Choi, Hye-Won (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Seok-Min (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Jinwoo (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Cho, Younghoon (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2020.03.02
  • Accepted : 2020.05.27
  • Published : 2020.09.20

Abstract

This paper presents a deadbeat predictive direct power control (DB-DPC) scheme for a fast battery charger to improve its dynamic performance and stability. Recently, battery chargers have been adopting paralleled multi-leg converters based on silicon carbide (SiC) devices to increase power capacity, which reduces the charging duration. However, the inherent instability of the battery is regarded as a crucial issue during the fast charging process. Therefore, the proposed DB-DPC provides a stable steady state since it includes real-time estimation of the variable battery impedance. Furthermore, the DB-DPC effectively minimizes the rising and settling time, which demonstrates fast-dynamic response characteristics when compared to proportional-integral (PI) control. The control performance is verified by various simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy(MOTIE, Korea) (No. 20194030202370, 20010854).

References

  1. Lee, K.-B.: Advanced Power Electronics. Munundang, Seoul (2019)
  2. Park, J.-H., Jeong, H.-G., Lee, K.-B.: Output current ripple reduction algorithms for home energy storage systems. Energies 6(10), 5552-5569 (2013) https://doi.org/10.3390/en6105552
  3. Bak, Y., Jang, Y., Lee, K.-B.: Torque predictive control for permanent magnet synchronous motor drives using indirect matrix converter. J. Power Electron. 19(6), 1536-1543 (2019) https://doi.org/10.6113/jpe.2019.19.6.1536
  4. Garcia, O., Zumal, P., de Castro, A., Cobos, J.A.: Automotive DC-DC bidirectional converter made with many interleaved buck stages. IEEE Trans. Power Electron. 21(3), 578-586 (2006) https://doi.org/10.1109/TPEL.2006.872379
  5. Villarruel-Parra, A., Forsyth, A.J.: Enhanced average-value modeling of interleaved DC-DC converters using sampler decomposition. IEEE Trans. Power Electron. 32(3), 2290-2299 (2017) https://doi.org/10.1109/TPEL.2016.2559449
  6. Tsai, J.-R., Wu, T.-F., Wu, C.-W., Chen, Y.-M., Lee, M.-C.: Interleaving phase shifters for critical-mode boost PFC. IEEE Trans. Power Electron. 23(3), 1348-1357 (2008) https://doi.org/10.1109/TPEL.2008.921152
  7. Khosroshahi, A., Abapour, M., Sabahi, M.: Reliability evaluation of conventional and interleaved DC-DC boost converters. IEEE Trans. Power Electron. 30(10), 5821-5828 (2015) https://doi.org/10.1109/TPEL.2014.2380829
  8. Ma, P., Liang, W., Chen, H., Zhang, Y., Hu, X.: Interleaved high step-up boost converter. J. Power Electron. 19(3), 665-675 (2019) https://doi.org/10.6113/JPE.2019.19.3.665
  9. Xie, B., Wang, J., Ji, Y., Ma, C.: Power distribution control scheme for a three-phase interleaved DC/DC converter in the charging and discharging processes of a battery energy storage system. J. Power Electron. 18(4), 1211-1222 (2018) https://doi.org/10.6113/JPE.2018.18.4.1211
  10. Che, Y., Wang, D., Liu, X.: Design of dual-channel interleaved phase-shift full-bridge converter. J. Electr. Eng. Technol. 12(4), 1529-1536 (2017) https://doi.org/10.5370/JEET.2017.12.4.1529
  11. Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y., Li, Z.: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J. Power Sources 251, 38-54 (2014) https://doi.org/10.1016/j.jpowsour.2013.11.029
  12. Ko, S.-T., Ahn, J.-H., Lee, B.-K.: Enhanced equivalent circuit modeling for Li-ion battery using reduction parameter correction. J. Electr. Eng. Technol. 13(3), 1147-1155 (2018) https://doi.org/10.5370/JEET.2018.13.3.1147
  13. Camara, M.B., Gualous, H., Gustin, F., Berthon, A., Dakyo, B.: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy. IEEE. Trans. Ind. Electron. 57(2), 587-597 (2010) https://doi.org/10.1109/TIE.2009.2025283
  14. Kim, S.M., Kang, H.S., Lee, K.B.: Single-phase bidirectional onboard charger using starter generator system in hybrid electric vehicles. Electronics 7, 287 (2018) https://doi.org/10.3390/electronics7110287
  15. Haga, H., Kurokawa, F.: Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles. IEEE Trans. Power Electron. 32(4), 2498-2507 (2017) https://doi.org/10.1109/TPEL.2016.2570800
  16. Sallan, J., Villa, J.L., Llombart, A., Sanz, J.F.: Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Trans. Ind. Electron. 56(6), 2140-2149 (2009) https://doi.org/10.1109/TIE.2009.2015359
  17. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  18. Hu, J., Shang, L., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Ind. Electron. 26(1), 210-222 (2011) https://doi.org/10.1109/TPEL.2010.2057518
  19. Wang, P., Bi, Y., Gao, F., Song, T., Zhang, Y.: An improved deadbeat control method for single-phase pwm rectifiers in charging system for EVs. IEEE Trans. Veh. Technol. 68(10), 9672-9681 (2019) https://doi.org/10.1109/tvt.2019.2937653
  20. Song, W., Ma, J., Zhou, L., Feng, X.: Deadbeat predictive power control of single-phase three-level neutral-point-clamped converters using space-vector modulation for electric railway traction. IEEE Trans. Power Electron. 31(1), 721-732 (2016) https://doi.org/10.1109/TPEL.2015.2400924
  21. Mora, A., Cardenas-Dobson, R., Aguilera, R.P., Angulo, A., Donoso, F., Rodriguez, J.: Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-level NPC converters. IEEE Trans. Power Electron. 34(12), 12464-12475 (2019) https://doi.org/10.1109/tpel.2019.2906805
  22. Kim, S.-K., Park, J.-H., Lee, K.-B.: Robust optimal output voltage tracking algorithm for interleaved N-phase DC/DC boost converter with performance recovery property. Int. J. Electron. 105(10), 1673-1694 (2018) https://doi.org/10.1080/00207217.2018.1477198
  23. Wang, Y., Wang, X., Xie, W., Wang, F., Dou, M., Kennel, R.M., Lorenz, R.D., Gerling, D.: Deadbeat model-predictive torque control with discrete space-vector modulation for PSMS drives. IEEE Trans. Ind. Electron. 64(5), 3537-3547 (2017) https://doi.org/10.1109/TIE.2017.2652338
  24. Lee, B.-S., Kim, S.-K., Park, J.-H., Lee, K.-B.: Adaptive output voltage tracking controller for uncertain Dc/DC boost converter. Int. J. Electron. 103(6), 1002-1017 (2016) https://doi.org/10.1080/00207217.2015.1082206
  25. Vu, H.-C., Lee, H.-H.: Common-mode voltage and current harmonic reduction for fve-phase VSIs with model predictive current control. J. Power Electron. 19(6), 1477-1485 (2019) https://doi.org/10.6113/jpe.2019.19.6.1477
  26. Barater, D., Concari, C., Buticchi, G., Gurpinar, E., De, D., Castellazzi, A.: Performance evaluation of a three-level anpc photovoltaic grid-connected inverter with 650-V SiC devices and optimized PWM. IEEE Trans. Ind. Appl. 52(3), 2475-2485 (2016) https://doi.org/10.1109/TIA.2016.2514344
  27. Ni, L., Patterson, D.J., Hudgins, J.L.: High power current sensorless bidirectional 16-phase interleaved dc-dc converter for hybrid vehicle application. IEEE Trans. Power Electron. 27(3), 1141-1151 (2012) https://doi.org/10.1109/TPEL.2011.2165297
  28. Hong, F., Liu, J., Ji, B., Zhou, Y., Wang, J., Wang, C.: Interleaved dual buck full-bridge three-level inverter. IEEE Trans. Power Electron. 31(2), 964-974 (2016) https://doi.org/10.1109/TPEL.2015.2421295
  29. De, D., Klumpner, C., Patel, C., Ponggorn, K., Rashed, M., Asher, R.: Modelling and control of a multi-stage interleaved super-capacitor energy storage system. IET Power Electron. 6(7), 1360-1375 (2013) https://doi.org/10.1049/iet-pel.2012.0529
  30. Kim, S.-K., Choi, D.-K., Lee, K.-B., Lee, Y.I.: Offset-free model predictive control for the power control of three-phase AC/DC converters. IEEE Trans. Ind. Electron. 62(11), 7114-7126 (2015) https://doi.org/10.1109/TIE.2015.2436353

Cited by

  1. Finite-Time Current Tracking in Boost Converters by Using a Saturated Super-Twisting Algorithm vol.2020, 2020, https://doi.org/10.1155/2020/7326157
  2. 전기차 충전기용 모듈형 DC/DC 컨버터의 병렬 제어 기법 vol.25, pp.1, 2021, https://doi.org/10.7471/ikeee.2021.25.1.101