Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy(MOTIE, Korea) (No. 20194030202370, 20010854).
References
- Lee, K.-B.: Advanced Power Electronics. Munundang, Seoul (2019)
- Park, J.-H., Jeong, H.-G., Lee, K.-B.: Output current ripple reduction algorithms for home energy storage systems. Energies 6(10), 5552-5569 (2013) https://doi.org/10.3390/en6105552
- Bak, Y., Jang, Y., Lee, K.-B.: Torque predictive control for permanent magnet synchronous motor drives using indirect matrix converter. J. Power Electron. 19(6), 1536-1543 (2019) https://doi.org/10.6113/jpe.2019.19.6.1536
- Garcia, O., Zumal, P., de Castro, A., Cobos, J.A.: Automotive DC-DC bidirectional converter made with many interleaved buck stages. IEEE Trans. Power Electron. 21(3), 578-586 (2006) https://doi.org/10.1109/TPEL.2006.872379
- Villarruel-Parra, A., Forsyth, A.J.: Enhanced average-value modeling of interleaved DC-DC converters using sampler decomposition. IEEE Trans. Power Electron. 32(3), 2290-2299 (2017) https://doi.org/10.1109/TPEL.2016.2559449
- Tsai, J.-R., Wu, T.-F., Wu, C.-W., Chen, Y.-M., Lee, M.-C.: Interleaving phase shifters for critical-mode boost PFC. IEEE Trans. Power Electron. 23(3), 1348-1357 (2008) https://doi.org/10.1109/TPEL.2008.921152
- Khosroshahi, A., Abapour, M., Sabahi, M.: Reliability evaluation of conventional and interleaved DC-DC boost converters. IEEE Trans. Power Electron. 30(10), 5821-5828 (2015) https://doi.org/10.1109/TPEL.2014.2380829
- Ma, P., Liang, W., Chen, H., Zhang, Y., Hu, X.: Interleaved high step-up boost converter. J. Power Electron. 19(3), 665-675 (2019) https://doi.org/10.6113/JPE.2019.19.3.665
- Xie, B., Wang, J., Ji, Y., Ma, C.: Power distribution control scheme for a three-phase interleaved DC/DC converter in the charging and discharging processes of a battery energy storage system. J. Power Electron. 18(4), 1211-1222 (2018) https://doi.org/10.6113/JPE.2018.18.4.1211
- Che, Y., Wang, D., Liu, X.: Design of dual-channel interleaved phase-shift full-bridge converter. J. Electr. Eng. Technol. 12(4), 1529-1536 (2017) https://doi.org/10.5370/JEET.2017.12.4.1529
- Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y., Li, Z.: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J. Power Sources 251, 38-54 (2014) https://doi.org/10.1016/j.jpowsour.2013.11.029
- Ko, S.-T., Ahn, J.-H., Lee, B.-K.: Enhanced equivalent circuit modeling for Li-ion battery using reduction parameter correction. J. Electr. Eng. Technol. 13(3), 1147-1155 (2018) https://doi.org/10.5370/JEET.2018.13.3.1147
- Camara, M.B., Gualous, H., Gustin, F., Berthon, A., Dakyo, B.: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy. IEEE. Trans. Ind. Electron. 57(2), 587-597 (2010) https://doi.org/10.1109/TIE.2009.2025283
- Kim, S.M., Kang, H.S., Lee, K.B.: Single-phase bidirectional onboard charger using starter generator system in hybrid electric vehicles. Electronics 7, 287 (2018) https://doi.org/10.3390/electronics7110287
- Haga, H., Kurokawa, F.: Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles. IEEE Trans. Power Electron. 32(4), 2498-2507 (2017) https://doi.org/10.1109/TPEL.2016.2570800
- Sallan, J., Villa, J.L., Llombart, A., Sanz, J.F.: Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Trans. Ind. Electron. 56(6), 2140-2149 (2009) https://doi.org/10.1109/TIE.2009.2015359
- Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
- Hu, J., Shang, L., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Ind. Electron. 26(1), 210-222 (2011) https://doi.org/10.1109/TPEL.2010.2057518
- Wang, P., Bi, Y., Gao, F., Song, T., Zhang, Y.: An improved deadbeat control method for single-phase pwm rectifiers in charging system for EVs. IEEE Trans. Veh. Technol. 68(10), 9672-9681 (2019) https://doi.org/10.1109/tvt.2019.2937653
- Song, W., Ma, J., Zhou, L., Feng, X.: Deadbeat predictive power control of single-phase three-level neutral-point-clamped converters using space-vector modulation for electric railway traction. IEEE Trans. Power Electron. 31(1), 721-732 (2016) https://doi.org/10.1109/TPEL.2015.2400924
- Mora, A., Cardenas-Dobson, R., Aguilera, R.P., Angulo, A., Donoso, F., Rodriguez, J.: Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-level NPC converters. IEEE Trans. Power Electron. 34(12), 12464-12475 (2019) https://doi.org/10.1109/tpel.2019.2906805
- Kim, S.-K., Park, J.-H., Lee, K.-B.: Robust optimal output voltage tracking algorithm for interleaved N-phase DC/DC boost converter with performance recovery property. Int. J. Electron. 105(10), 1673-1694 (2018) https://doi.org/10.1080/00207217.2018.1477198
- Wang, Y., Wang, X., Xie, W., Wang, F., Dou, M., Kennel, R.M., Lorenz, R.D., Gerling, D.: Deadbeat model-predictive torque control with discrete space-vector modulation for PSMS drives. IEEE Trans. Ind. Electron. 64(5), 3537-3547 (2017) https://doi.org/10.1109/TIE.2017.2652338
- Lee, B.-S., Kim, S.-K., Park, J.-H., Lee, K.-B.: Adaptive output voltage tracking controller for uncertain Dc/DC boost converter. Int. J. Electron. 103(6), 1002-1017 (2016) https://doi.org/10.1080/00207217.2015.1082206
- Vu, H.-C., Lee, H.-H.: Common-mode voltage and current harmonic reduction for fve-phase VSIs with model predictive current control. J. Power Electron. 19(6), 1477-1485 (2019) https://doi.org/10.6113/jpe.2019.19.6.1477
- Barater, D., Concari, C., Buticchi, G., Gurpinar, E., De, D., Castellazzi, A.: Performance evaluation of a three-level anpc photovoltaic grid-connected inverter with 650-V SiC devices and optimized PWM. IEEE Trans. Ind. Appl. 52(3), 2475-2485 (2016) https://doi.org/10.1109/TIA.2016.2514344
- Ni, L., Patterson, D.J., Hudgins, J.L.: High power current sensorless bidirectional 16-phase interleaved dc-dc converter for hybrid vehicle application. IEEE Trans. Power Electron. 27(3), 1141-1151 (2012) https://doi.org/10.1109/TPEL.2011.2165297
- Hong, F., Liu, J., Ji, B., Zhou, Y., Wang, J., Wang, C.: Interleaved dual buck full-bridge three-level inverter. IEEE Trans. Power Electron. 31(2), 964-974 (2016) https://doi.org/10.1109/TPEL.2015.2421295
- De, D., Klumpner, C., Patel, C., Ponggorn, K., Rashed, M., Asher, R.: Modelling and control of a multi-stage interleaved super-capacitor energy storage system. IET Power Electron. 6(7), 1360-1375 (2013) https://doi.org/10.1049/iet-pel.2012.0529
- Kim, S.-K., Choi, D.-K., Lee, K.-B., Lee, Y.I.: Offset-free model predictive control for the power control of three-phase AC/DC converters. IEEE Trans. Ind. Electron. 62(11), 7114-7126 (2015) https://doi.org/10.1109/TIE.2015.2436353
Cited by
- Finite-Time Current Tracking in Boost Converters by Using a Saturated Super-Twisting Algorithm vol.2020, 2020, https://doi.org/10.1155/2020/7326157
- 전기차 충전기용 모듈형 DC/DC 컨버터의 병렬 제어 기법 vol.25, pp.1, 2021, https://doi.org/10.7471/ikeee.2021.25.1.101