DOI QR코드

DOI QR Code

SVPWM technique for common-mode voltage elimination of dual-winding fault-tolerant permanent magnet motor drives

  • Baik, Jae-Hyuk (School of Electrical Engineering, Korea University) ;
  • Yun, Sang-Won (EBS Center, Global R&D, Mando Corporation) ;
  • Kim, Dong-Sik (Department of Electrical Engineering, Soonchunhyang University) ;
  • Kwon, Chun-Ki (Department of Medical IT Engineering, Soonchunhyang University) ;
  • Yoo, Ji-Yoon (School of Electrical Engineering, Korea University)
  • 투고 : 2019.12.27
  • 심사 : 2020.02.13
  • 발행 : 2020.05.20

초록

A new space vector pulse-width modulation (SVPWM) technique to eliminate common-mode voltage (CMV) is proposed for a dual three-phase inverter fed-dual-winding fault-tolerant permanent magnet motor (FTPMM) drive. In general, since both the PWM module-1 of an inverter-1 drive and the PWM module-2 of an inverter-2 drive adopt the conventional SVPWM (CSVPWM) technique, two identical CMVs are generated in the drives. Each of the CMCs generated by the CMVs flows through the stray capacitances between the stator windings and the motor frame. These currents flow into the ground of the drive, where they are combined. Hence, in the proposed technique, each of the PWM modules adopts the remote-state PWM (RSPWM)2A and RSPWM2B. As a result, two CMVs with same absolute values and opposite polarities are generated at every switching period, and the corresponding generalized total CMV of the dual-winding FTPMM drive always becomes zero. Analytical and experimental results are provided to verify the validity of the proposed technique.

키워드

참고문헌

  1. Jiang, X., Huang, W., Cao, R., Hao, Z., Jiang, W.: Electric drive system of dual-winding fault-tolerant permanent-magnet motor for aerospace applications. IEEE Trans. Ind. Electron. 62(12), 7322-7330 (2015) https://doi.org/10.1109/TIE.2015.2454483
  2. Bai, H., Zhu, J., Qin, J., Sun, J.: Fault-tolerant control for a dual-winding fault-tolerant permanent magnet motor drive based on SVPWM. IET Trans. Power Electron. 10(5), 509-516 (2017) https://doi.org/10.1049/iet-pel.2015.1033
  3. Kalaiselvi, J., Srinivas, S.: Bearing currents and shaft voltage reduction in dual-inverter-fed open-end winding induction motor with reduced CMV PWM methods. IEEE Trans. Ind. Electron. 62(1), 144-152 (2015) https://doi.org/10.1109/TIE.2014.2336614
  4. Mecrow, B.C., Jack, A.G., Haylock, J.A., Coles, J.: Fault-tolerant permanent magnet machine drives. IEE Proc. Electr. Power Appl. 143(6), 437-442 (1996) https://doi.org/10.1049/ip-epa:19960796
  5. Ede, J.D., Atallah, K., Wang, J., Howe, D.: Effect of optimal torque control on rotor loss of fault-tolerant permanent-magnet brushless machines. IEEE Trans. Magn. 38(5), 3291-3293 (2002) https://doi.org/10.1109/TMAG.2002.802294
  6. Wang, J., Atallah, K., Howe, D.: Optimal torque control of fault-tolerant permanent magnet brushless machines. IEEE Trans. Magn. 39(5), 2962-2964 (2003) https://doi.org/10.1109/TMAG.2003.816707
  7. Barcaro, M., Bianchi, N., Magnussen, F.: Analysis and tests of a dual three-phase 12-slot 10-pole permanent-magnet motor. IEEE Trans. Ind. Appl. 46(6), 2355-2362 (2010) https://doi.org/10.1109/TIA.2010.2070784
  8. Zhu, J., Bai, H., Wang, X., Li, X.: Current vector control strategy in a dual-winding fault-tolerant permanent magnet motor drive. IEEE Trans. Energy Conv. 33(4), 2191-2199 (2018) https://doi.org/10.1109/TEC.2018.2876512
  9. Barcaro, M., Bianchi, N., Magnussen, F.: Faulty operations of a PM fractional-slot machine with a dual three-phase winding. IEEE Trans. Ind. Electron. 58(9), 3825-3832 (2011) https://doi.org/10.1109/TIE.2010.2087300
  10. Wu, W., Sun, Y., Lin, Z., He, Y., Huang, M., Blaabjerg, F., Chung, H.S.: A modified LLCL filter with the reduced conducted EMI noise. IEEE Trans. Power Electron. 29(7), 3393-3402 (2014) https://doi.org/10.1109/TPEL.2013.2280672
  11. Guzman, R., de Vicuna, L.G., Morales, J., Castilla, M., Miret, J.: Model-based active damping control for three-phase voltage source inverters with LCL filter. IEEE Trans. Power Electron. 32(7), 5637-5650 (2017) https://doi.org/10.1109/TPEL.2016.2605858
  12. Morris, C.T., Han, D., Sarlioglu, B.: Reduction of common mode voltage and conducted EMI through three-phase inverter topology. IEEE Trans. Power Electron. 32(3), 1720-1724 (2017) https://doi.org/10.1109/TPEL.2016.2608388
  13. Wang, F.: Motor shaft voltages and bearing currents and their reduction in multilevel medium-voltage PWM voltage-source-inverter drive applications. IEEE Trans. Ind. Appl. 36(5), 1336-1341 (2000) https://doi.org/10.1109/28.871282
  14. Hava, A.M., Un, E.: Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage source inverters. IEEE Trans. Power Electron. 24(1), 241-252 (2009) https://doi.org/10.1109/TPEL.2008.2005719
  15. Yun, S.W., Baik, J.H., Kim, D.S., Yoo, J.Y.: A new active zero state PWM algorithm for reducing the number of switchings. J. Power Electron. 17(1), 88-95 (2017) https://doi.org/10.6113/JPE.2017.17.1.88
  16. Baik, J.H., Yun, S.W., Kim, D.S., Kwon, C.K., Yoo, J.Y.: EMI noise reduction with new active zero state PWM for integrated dynamic brake systems. J. Power Electron. 18(3), 923-930 (2018) https://doi.org/10.6113/JPE.2018.18.3.923
  17. Chen, H., Zhao, H.: Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters. IET Trans. Power Electron. 9(14), 2611-2620 (2016) https://doi.org/10.1049/iet-pel.2015.1019
  18. Un, E., Hava, A.M.: A near-state PWM method with reduced switching losses and reduced common-mode voltage for three-phase voltage source inverters. IEEE Trans. Ind. Appl. 45(2), 782-793 (2009) https://doi.org/10.1109/TIA.2009.2013580
  19. Loh, P.C., Holmes, D.G., Fukuta, Y., Lipo, T.A.: Reduced common-mode modulation strategies for cascaded multilevel inverters. IEEE Trans. Ind. Appl. 39(5), 1386-1395 (2003) https://doi.org/10.1109/TIA.2003.816547
  20. Nguyen, T.K.T., Nguyen, N.V.: An efficient four-state zero common-mode voltage PWM scheme with reduced current distortion for a three-level inverter. IEEE Trans. Ind. Electron. 65(2), 1021-1030 (2018) https://doi.org/10.1109/tie.2017.2733418
  21. Baiju, M.R., Mohapatra, K.K., Kanchan, R.S., Gopakumar, K.: A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive. IEEE Trans. Power Electron. 19(3), 794-805 (2004) https://doi.org/10.1109/TPEL.2004.826514

피인용 문헌

  1. High-Performance Control of Surface PM Synchronous Motor by Power Factor Angle-Based Control of Stator Voltage Vector vol.32, pp.3, 2020, https://doi.org/10.1007/s40313-021-00701-4