DOI QR코드

DOI QR Code

High step-up three-level DC-DC converter with three-winding coupled-inductor

  • Ding, Xinping (School of Information and Control Engineering, Qingdao University of Technology) ;
  • Zhao, Delin (School of Information and Control Engineering, Qingdao University of Technology) ;
  • Liu, Yun (School of Information and Control Engineering, Qingdao University of Technology) ;
  • Li, Kai (School of Information and Control Engineering, Qingdao University of Technology) ;
  • Hao, Yangyang (School of Information and Control Engineering, Qingdao University of Technology)
  • Received : 2019.04.09
  • Accepted : 2019.08.19
  • Published : 2020.01.20

Abstract

Due to the wide adoption of photovoltaic power generation, non-isolated high step-up DC-DC converters are becoming more and more popular. Among these converters, the switched/coupled-inductor-based converter is more attractive due to the fact that it has fewer power devices and a high efficiency. This paper presents a three-level high step-up DC-DC topology with a three-winding coupled-inductor. When compared with a conventional switched/coupled-inductor-based converter, a higher efficiency can be achieved, owing to low voltage stresses devices, fewer semiconductors in the power loop, lower current stresses, and ZCS of the main switches. The operating principle of the proposed topology is analyzed in detail via equivalent circuits, where a theoretical analysis is carried out using state space modelling. Experimental results obtained on a 24-300 V, 360 W lab prototype have verified the excellent performance of the proposed DC-DC converter.

Keywords

References

  1. Li, W., et al.: Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239-1250 (2011) https://doi.org/10.1109/TIE.2010.2049715
  2. Tseng, K.C., et al.: High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans. Ind. Electron. 61(3), 1311-1319 (2014) https://doi.org/10.1109/TIE.2013.2261036
  3. Tseng, K.C., et al.: A high step-up converter with a voltage multiplier module for a photovoltaic system. IEEE Trans. Power Electron. 28(6), 3047-3057 (2013) https://doi.org/10.1109/TPEL.2012.2217157
  4. Tang, Y., et al.: A switched-capacitor-based active-network converter with high voltage gain. IEEE Trans. Power Electron. 29(6), 2959-2968 (2014) https://doi.org/10.1109/TPEL.2013.2272639
  5. Chen, Y.T., et al.: Analysis and design of a novel high-step-up DC/DC converter with coupled inductors. IEEE Trans. Power Electron. 33(1), 425-436 (2018) https://doi.org/10.1109/TPEL.2017.2668445
  6. Kjaer, S.B., et al.: A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292-1306 (2005) https://doi.org/10.1109/TIA.2005.853371
  7. Xue, Y., et al.: Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans. Power Electron. 19(5), 1305-1314 (2004) https://doi.org/10.1109/TPEL.2004.833460
  8. Liu, B., et al.: Photovoltaic DC-building-module-based BIPV system-concept and design considerations. IEEE Trans. Ind. Electron. 26(5), 1418-1429 (2011) https://doi.org/10.1109/TPEL.2010.2085087
  9. He, L., et al.: High step-up DC-DC converter with active soft-switching and voltage-clamping for renewable energy systems. IEEE Trans. Power Electron. 99, 1 (2018)
  10. Finney, S.J., et al.: Current control technique for three-phase voltage-source PWM converters: a survey. IEEE Trans. Power Electron. 22(4), 1453-1463 (2007) https://doi.org/10.1109/TPEL.2007.900505
  11. Choi, W.-Y., Choi, J.-Y.: High-efficiency power conditioning system for grid-connected photovoltaic modules. J. Power Electron. 11(4), 561-567 (2011) https://doi.org/10.6113/JPE.2011.11.4.561
  12. Spiazzi, G., et al.: High step-up ratio flyback converter with active clamp and voltage multiplier. IEEE Trans. Power Electron. 26(11), 3205-3214 (2011) https://doi.org/10.1109/TPEL.2011.2134871
  13. Roh, C.-W., et al.: Polarity inversion DC-DC power conversion circuit with high voltage step-up raito. J. Power Electron. 11(5), 669-676 (2011) https://doi.org/10.6113/JPE.2011.11.5.669
  14. Chu, G.M.L., et al.: Flyback-based high step-up converter with reduced power processing stages. IET Power Electron. 5(3), 349-357 (2012) https://doi.org/10.1049/iet-pel.2011.0204
  15. Wai, R.-J., Jheng, K.-H.: High-efficiency single-input multiple-output DC-DC converter. IEEE Trans. Power Electron. 28(2), 886-898 (2013) https://doi.org/10.1109/TPEL.2012.2205272
  16. Gu, B., et al.: High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications. IEEE Trans. Power Electron. 28(4), 2048-2058 (2013) https://doi.org/10.1109/TPEL.2012.2198834
  17. Liang, T.J., et al.: Ultra-large gain step-up switched-capacitor DC-DC converter with coupled inductor for alternative sources of energy. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 864-874 (2012) https://doi.org/10.1109/TCSI.2011.2169886
  18. Hsieh, Y.-P., et al.: Analysis and implementation of a novel single-switch high step-up DC-DC converter. IET Power Electron. 5(1), 11-21 (2012) https://doi.org/10.1049/iet-pel.2010.0279
  19. Liang, T.J., et al.: Novel isolated high-step-up DC-DC converter with voltage lift. IEEE Trans. Ind. Electron. 60(4), 1483-1491 (2013) https://doi.org/10.1109/TIE.2011.2177789
  20. Zhao, Y., et al.: High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications. IET Power Electron. 4(8), 851-859 (2011) https://doi.org/10.1049/iet-pel.2010.0232
  21. Tseng, K.C., Liang, T.J.: Novel high-efficiency step-up converter. IEE Proc. Electron. Power Appl. 151(2), 182-190 (2004) https://doi.org/10.1049/ip-epa:20040022
  22. Hsieh, Y.-P., et al.: Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques. IEEE Trans. Ind. Electron. 26(12), 3481-3490 (2011) https://doi.org/10.1109/TPEL.2011.2160876
  23. Hsieh, Y.-P., et al.: Novel high step-up DC-DC converter for distributed generation system. IEEE Trans. Ind. Electron. 60(4), 1473-1482 (2013) https://doi.org/10.1109/TIE.2011.2107721
  24. Sharifi, S., Monfared, M.: Series and tapped switched-coupled-inductors imepedance networks. IEEE Trans. Ind. Electron. 65(12), 9498-9508 (2018) https://doi.org/10.1109/tie.2018.2823694
  25. Liu, H., et al.: A family of high step-up coupled-inductor impedance-source inverters with reduced switching spikes. IEEE Trans. Power Electron. 33(11), 9116-9121 (2018) https://doi.org/10.1109/tpel.2018.2820814
  26. G. Spiazzi et. al., "Non-isolated High Step-up DC-DC Converter with Minimum Switch Voltage Stress," in Proceeding of SPEC, pp. 1-6, Apr. 2017
  27. Wai, R.J., Duan, R.Y.: High step-up converter with coupled-inductor. IEEE Trans. Power Electron. 20(5), 1025-1035 (2005)
  28. Huang, Y., et al.: Nonisolated harmonics-boosted resonant DC/DC converter with high-step-up gain. IEEE Trans. Power Electron. 33(9), 425-436 (2018) https://doi.org/10.1109/TPEL.2017.2668445
  29. Wu, G., et al.: Nonisolated high step-up DC-DC converters adopting switched-capacitor cell. IEEE Trans. Ind. Electron. 62(1), 383-393 (2015) https://doi.org/10.1109/TIE.2014.2327000
  30. Trazamni, Hadi, et al.: Full soft-switching high step-up DC-DC converter based on active resonant cell. IET Power Electron. 10(13), 1729-1739 (2017) https://doi.org/10.1049/iet-pel.2016.1006
  31. Jiao, Y., et al.: Voltage-lift split-inductor-type boost converters. IET Power Electron. 4(4), 353-362 (2011) https://doi.org/10.1049/iet-pel.2010.0093
  32. Nouri, T., et al.: An interleaved high step-up converter with coupled inductor and built-in transformer voltage multiplier cell techniques. IEEE Trans. Ind. Electron. 66(3), 1894-1905 (2019) https://doi.org/10.1109/tie.2018.2835420
  33. Young, C.-M., et al.: Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step-up DC-DC converter. IEEE Trans. Ind. Electron. 60(2), 523-537 (2013) https://doi.org/10.1109/TIE.2012.2188255
  34. Evran, F., Aydemir, M.T.: Isolated high step-up DC-DC converters with low voltage stress. IEEE Trans. Power Electron. 29(7), 3591-3603 (2014) https://doi.org/10.1109/TPEL.2013.2282813
  35. Chen, Y.-M., et al.: Analysis and implementation of a novel high step-up DC-DC converter with low switch voltage stress and reduced diode voltage stress. IET Power Electron. 9(9), 2003-2012 (2016) https://doi.org/10.1049/iet-pel.2015.0784
  36. Shang, Fei, et al.: Design and analysis of a high-voltage-gain step-up resonant DC-DC converter for transportation applications. IEEE Trans. Transp. Electr. 3(1), 157-167 (2017) https://doi.org/10.1109/TTE.2017.2656145
  37. Saadat, Peyman, Abbaszadeh, Karim: A single-switch high step-up DC-DC converter based on quadratic boost. IEEE Trans. Ind. Electron. 63(12), 7733-7741 (2016)
  38. Schmitz, Lenon, et al.: Generalized high step-up DC-DC boost-based converter with gain cell. IEEE Trans. Circuits Syst. I Regul. Pap. 64(2), 480-493 (2017) https://doi.org/10.1109/TCSI.2016.2603782
  39. Andrade, A.M., et al.: Synthesis and comparative analysis of very high step-up DC-DC converters adopting coupled inductor and voltage multiplier cells. IEEE Trans. Power Electron. 33(7), 5880-5897 (2018) https://doi.org/10.1109/tpel.2017.2742900
  40. Berkovich, Y., Axelrod, B.: Switched-coupled inductor cell for DC-DC converters with very large conversion ratio. IET Power Electron. 4(3), 309-315 (2011) https://doi.org/10.1049/iet-pel.2009.0341
  41. Yang, L.S., et al.: Novel high step-up DC-DC converter with coupled-inductor and voltage-doubler circuits. IEEE Trans. Ind. Electron. 58(9), 4196-4206 (2011) https://doi.org/10.1109/TIE.2010.2098360
  42. Saadat, Peyman, Abbaszadeh, Karim: Analysis and implementation of a nonisolated bidirectional DC-DC converter with high voltage gain. IEEE Trans. Ind. Electron. 63(8), 4878-4888 (2016) https://doi.org/10.1109/TIE.2016.2552139
  43. Ahmed, F., Cha, H., Kim, S., et al.: Switched-coupled-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 31(2), 1241-1254 (2016) https://doi.org/10.1109/TPEL.2015.2414971