References
- Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
- Kerscher O, Felberbaum R, Hochstrasser M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22: 159-180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503
-
Metzger MB, Hristova VA and Weissman AM. 2012. HECT and RING finger families of
$E_3$ ubiquitin ligases at a glance. J. Cell Sci. 125: 531-537. https://doi.org/10.1242/jcs.091777 - Deshaies RJ. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435-467. https://doi.org/10.1146/annurev.cellbio.15.1.435
- Cardozo T, Pagano M. 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5: 739-751. https://doi.org/10.1038/nrm1471
- Genschik P, Sumara I, Lechner E. 2013. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32: 2307-2320. https://doi.org/10.1038/emboj.2013.173
- Petroski MD, Deshaies RJ. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6: 9-20. https://doi.org/10.1038/nrm1547
- Lydeard JR, Schulman BA, Harper JW. 2013. Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14: 1050-1061. https://doi.org/10.1038/embor.2013.173
- Etienne-Manneville S, Hall A. 2002. RhoGTPases in cell biology. Nature 420: 629-635. https://doi.org/10.1038/nature01148
- Hodge RG, Ridley AJ. 2016. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17: 496-510. https://doi.org/10.1038/nrm.2016.67
- Schmidt A, Hall A. 2002. Guanine nucleotide exchange factors for Rho GTPases: Turning on the switch. Genes Dev. 16: 1587-1609. https://doi.org/10.1101/gad.1003302
- Moon SY, Zheng Y. 2003. GTPase-activation proteins in cell regulation. Trends Cell Biol. 13: 13-22. https://doi.org/10.1016/S0962-8924(02)00004-1
- Dovas A, Couchman JR.2005. RhoGDI: Multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390: 1-9. https://doi.org/10.1042/BJ20050104
- Olofsson B. 1999. guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11: 545-554. https://doi.org/10.1016/S0898-6568(98)00063-1
- Dransart E, Olofsson B, Cherfils J. 2005. RhoGDIs revisited: novel roles in Rho regulation. Traffic 6: 957-966. https://doi.org/10.1111/j.1600-0854.2005.00335.x
- Garcia-Mata R, Boulter E, Burridge K. 2011. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12: 493-504. https://doi.org/10.1038/nrm3153
- DerMardirossian C, Bokoch GM. 2005. GDIs: Central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15: 356-363. https://doi.org/10.1016/j.tcb.2005.05.001
- Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, et al. 1992. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the Cdc42Hs proteins. J. Biol. Chem. 267: 22860-22868. https://doi.org/10.1016/S0021-9258(18)50026-0
- Scherle P, Behrens T, Staudt LM. 1993. Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc. Natl. Acad. Sci. USA 90: 7568-7572. https://doi.org/10.1073/pnas.90.16.7568
- Adra CN, Manor D, Ko JL, Zhu S, Horiuchi T, Van Aelst L, et al. 1997. RhoGDIgamma: A GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc. Natl. Acad. Sci. USA 94: 4279-4284. https://doi.org/10.1073/pnas.94.9.4279
- Harding MA, Theodorescu D. 2010. RhoGDI signaling provides targets for cancer therapy. Eur. J. Cancer 46: 1252-1259. https://doi.org/10.1016/j.ejca.2010.02.025
- Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. 2019. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 8: 1037. https://doi.org/10.3390/cells8091037
- Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, et al. 2014 miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 74: 3031-3042. https://doi.org/10.1158/0008-5472.CAN-13-2193
- Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F, et al. 2002. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin. Exp. Metastasis 19: 9-15. https://doi.org/10.1023/A:1013884426692
- Wang H, Wang B, Liao Q, An H, Li W, Jin X, et al. 2014. Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma. FEBS Lett. 588: 503-508. https://doi.org/10.1016/j.febslet.2013.12.016
- Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY, et al. 2018. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett. 417: 141-151. https://doi.org/10.1016/j.canlet.2018.01.002
- Bayon Y, Trinidad AG, de la Puerta ML, Del Carmen Rodríguez M, Bogetz J, Rojas A, et al. 2008. KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS J. 275: 3900-3910. https://doi.org/10.1111/j.1742-4658.2008.06537.x
- Brockmann M, Blomen VA, Nieuwenhuis J, Stickel E, Raaben M, Bleijerveld OB, et al. 2017. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature 546: 307-311. https://doi.org/10.1038/nature22376
- Rivas J, Diaz N, Silva I, Morales D, Lavanderos B, Alvarez A, et al. 2020. KCTD5, a novel TRPM4-regulatory protein required for cell migration as a new predictor for breast cancer prognosis. FASEB J. 34: 7847-7865. https://doi.org/10.1096/fj.201901195RRR
-
Pasini S, Liu J, Corona C, Peze-Heidsieck E, Shelanski M, Greene LA. 2016. Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of
$RhoGDI{\alpha}$ . Sci. Rep. 6: 36952. https://doi.org/10.1038/srep36952 - Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. 2015. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget 6: 36231-36244. https://doi.org/10.18632/oncotarget.4740
- Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M. et al. 2010. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12: 390-399. https://doi.org/10.1038/ncb2039
-
Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, et al. 2017. NF-
${\kappa}B$ p65 overexpression promotes bladder cancer cell migration via FBW7-mediated degradation of$RhoGDI{\alpha}$ protein. Neoplasia 19: 672-683. https://doi.org/10.1016/j.neo.2017.06.002 - Dai F, Qi Y, Guan W, Meng G, Liu Z, Zhang T, et al. 2019. RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling. Atherosclerosis 288: 124-136. https://doi.org/10.1016/j.atherosclerosis.2019.07.010
- Olson MF. 2018. GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 9: 203-215. https://doi.org/10.1080/21541248.2016.1218407
- Jung H, Yoon SR, Lim J, Cho HJ, Lee HG. 2020. Dysregulation of Rho GTPases in human cancers. Cancers (Basel). 12: 1179. https://doi.org/10.3390/cancers12051179
- Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. 2005. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603-1609. https://doi.org/10.1126/science.1105718
- Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, 2009. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell. 35: 841-855. https://doi.org/10.1016/j.molcel.2009.09.004
- Kovacevic I, Sakaue T, Majolee J, Pronk MC, Maekawa M, Geerts D, et al. 2018. The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB. J. Cell Biol. 217: 1015-1032. https://doi.org/10.1083/jcb.201606055
Cited by
- Regulation of Rho GTPases in the Vasculature by Cullin3-Based E3 Ligase Complexes vol.9, 2020, https://doi.org/10.3389/fcell.2021.680901
- Pyrimidine Biosynthetic Enzyme CAD: Its Function, Regulation, and Diagnostic Potential vol.22, pp.19, 2020, https://doi.org/10.3390/ijms221910253