DOI QR코드

DOI QR Code

Modeling and Simulation of Aircraft Motion for Performance Assessment of Airborne AESA Radar Considering Wind and Vibration

바람과 진동을 고려한 항공기 탑재 AESA 레이다 성능 평가용 운동 모델링 및 시뮬레이션

  • Received : 2020.06.15
  • Accepted : 2020.09.24
  • Published : 2020.11.01

Abstract

This paper introduces a simulator to assess the impacts of the wind and the airframe vibration on the performance of the Active Electronically Scanned Array (AESA) radar mounted in an aircraft. The AESA radar is mounted on the nose cone of an aircraft, and vibration occurs due to the drag force. This vibration affects the behavior of the AESA radar and can cause phase errors in signal. The simulator adopts the geometric model for nose cone, the mathematical models on the rigid-body dynamics of the aircraft, the average/turbulent winds, and the mode/ambient vibrations to compute the position and the attitude of the radar accurately. Numerical studies reflecting a set of test scenarios were conducted to demonstrate the effectiveness of the developed simulator.

본 논문은 AESA 레이다를 탑재한 항공기가 비행 중 발생하는 바람과 진동에 의해 받는 영향을 평가하기 위한 시뮬레이터를 소개한다. AESA 레이다는 항공기의 노즈콘(nose cone)에 탑재하며, 비행 시 공기의 저항력에 의한 진동이 발생한다. 이 진동은 AESA 레이다의 거동에 영향을 주며, 수신한 신호의 위상 오차를 야기할 수 있다. 시뮬레이터는 레이다의 위치와 자세를 정확하게 모의하기 위해 강체 동역학, 평균 바람/난류, 그리고 모드/환경 진동에 대한 수학적 모델과 노즈콘에 대한 기하모델을 고려한다. 일련의 테스트 시나리오에 기반한 연구가 개발된 시뮬레이터의 효율성을 입증하기 위해 수행되었다.

Keywords

References

  1. Park, J. W., Jang, D. S., Choi, H. L., Tahk, M. J., Roh, J. E. and Kim, S. J., "Integrated Simulator of Airborne Multi-function Radar Resource Manager and Environment Model," Journal of the Korean Society for Aeronautical and Space Sciences, July 2013, pp. 577-587.
  2. Ko, J. Y., Park, S. S., Choi, H. L., Ahn, J. M., Lee, S. W., Lee, D. H. and Yoon, J. S., "Implementation of Airbone Multi-Function Radar Including Attitude Maneuvering," The Journal of Korean Institute of Electromagnetic Engineering and Science, March 2017, pp. 225-236.
  3. Stevens, B. L., Lewis, F. L. and Johnson, E. N., Aircraft Control and Simulation, 3rd Ed., Wiley, 2003, pp. 633-641.
  4. Weiting, C. and Xiaoyong, L., "Modeling and Simulation of Atmospheric Synthetic Wind Field in Flight Simulation," IEEE 5th International Conference on Electronics Information and Emergency Communication, May 2015, pp. 357-363.
  5. KMA. https://data.kma.go.kr/data/hr/selectRdsdRltmList.do?pgmNo=49
  6. Hong, G. and Ye-lun, X., "Monte Carlo simulation for 3-D-field of atmospheric turbulence[J]," Acta Aeronautica et Astronautica Sinica, 2001, pp. 542-545.
  7. Specification, Military., "Flying qualities of piloted airplanes," United States Department of Defense 2, November 1980.
  8. Noel, J. P, Renson, L., Kerschen, G., Peeters, B., Manzato, S. and Debile, J., "Nonlinear dynamic analysis of an F-16 aircraft using GVT data," Proceedings of the international forum on aeroelasticity and structural dynamics, January 2013.
  9. Dossogne, T., Noel, J. P., Grappasonni, C., Kerschen, G., Peeters, B., Debille, J., Vaes, M. and Schoukens, J., "Nonlinear Ground Vibration Identification of an F-16 Aircraft - Part II Understanding Nonlinear Behaviour in Aerospace Structures Using Sine-sweep Testing," International Gorum on Aeroelasticity and Structural Dynamics, January 2015.
  10. Corda, S., "In-flight vibration environment of the NASA F-15B flight test fixture," NASA Dryden Flight Research Center, 2002.