DOI QR코드

DOI QR Code

초소형 날갯짓 비행체의 최적 날갯짓 속도 분포 연구

Velocity Profile Optimization of Flapping Wing Micro Air Vehicle

  • Cho, Sungyu (Department of Aerospace Engineering, Seoul National University) ;
  • Lee, Junhee (Department of Aerospace Engineering, Seoul National University) ;
  • Kim, Chongam (Department of Aerospace Engineering, Seoul National University)
  • 투고 : 2020.07.14
  • 심사 : 2020.09.14
  • 발행 : 2020.11.01

초록

본 논문에서는 20g급 날갯짓 초소형 비행체의 정지 비행 시의 날갯짓 효율을 증가시키기 위한 날갯짓 속도 분포 최적화를 진행하였다. 비원형 기어를 이용하여 다양한 날갯짓 속도 분포를 나타내는 메커니즘을 설계하였으며, 실증 기체를 이용하여 실험적으로 날갯짓 속도 분포 최적화를 진행하였다. 최적화 모델은 노이즈를 포함한 Kriging을 사용하였으며 불확실성에 의한 오차를 반영하였다. 날갯짓 속도 분포를 네 개의 파라미터로 나타내어 각 파라미터에 대한 최적화를 진행하였고. 최적화 결과 추력-파워비가 11.3% 증가하였다. 추력-파워비가 증가한 이유에 대해 탄성력에 의해 이전 스트로크에서의 각운동에너지가 일부 보존되어 다음 스트로크에서 사용되어 효율이 높아진 것으로 분석하였다.

A velocity profile for flapping flight is optimized to increase the power efficiency of 20g weighted flapping wing micro air vehicle in hover. The experimental optimization of flapping velocity profile is carried out with a real sized flapper, and various velocity profiles are realized by non-circular gear. Kriging with noise is adopted as a meta model of the profile optimization to reflect the data noise by uncertainty. The optimization results confirm that the flapping efficiency (thrust-to-power ratio) is substantially improved (11.3%) through the elastic deformation that carries the angular kinetic energy from previous stroke.

키워드

참고문헌

  1. Keennon, M., Klingebiel, K. and Won, H., "Development of the nano hummingbird: A tailless flapping wing micro air vehicle," 50th AIAA Aerospace Sciences Meeting, 2012.
  2. Phan, H. V., Kang, T. and Park, H. C., "Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control," Bioinspiration & Biomimetics, Vol. 12, No. 3, 2017, p. 036006. https://doi.org/10.1088/1748-3190/aa65db
  3. Roshanbin, A., Altartouri, H., Karasek, M. and Preumont, A., "COLIBRI: A hovering flapping twinwing robot," International Journal of Micro Air Vehicles, Vol. 9, No. 4, 2017, pp. 270-282. https://doi.org/10.1177/1756829317695563
  4. Birch, J. M. and Dickinson, M. H., "The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight," Journal of Experimental Biology, Vol. 206, No. 13, 2003, pp. 2257-2272. https://doi.org/10.1242/jeb.00381
  5. Dickinson, M. H., Lehmann, F.-O. and Sane, S. P., "Wing rotation and the Aerodynamic Basis of Insect Flight," Science, Vol. 284, Issue 5422, 1999, pp. 1954-1960. https://doi.org/10.1126/science.284.5422.1954
  6. Kim, J. H. and Kim, C. A., "Computational investigation of three-dimensional unsteady flowfield characteristics around insects' flapping flight," AIAA Journal, Vol. 49, 2011, pp. 953-968. https://doi.org/10.2514/1.J050485
  7. Lee, J. S., Kim, J. H. and Kim, C. A., "Numerical Study on the Unsteady-Force-Generation Mechanism of Insect Flapping Motion," AIAA Journal, Vol. 46, 2008, pp. 1835-1848. https://doi.org/10.2514/1.35646
  8. Lee, H. D., Kim, J. H. and Kim, C. A., "A Two-dimensional Numerical Study of Hummingbird's Flight Mechanisms and Flow Characteristics," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 8, 2019, pp. 729-736 https://doi.org/10.5139/JKSAS.2009.37.8.729
  9. Lee, J. S., Kim, J. H. and Kim, C. A., "The Aerodynamic Origin of Abrupt Thrust Generation in Insect Flight Part 1: Vortex Staying and Vortex Pairing Phenomena," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 35, No. 1, 2019, pp. 1-9 https://doi.org/10.5139/JKSAS.2007.35.1.001
  10. Lee, J. S., Kim, J. H. and Kim, C. A., "The Aerodynamic Origin of Abrupt Thrust Generation in Insect Flight Part 2: Study on Primary Aerodynamic Parameters," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 35, No. 1, 2019, pp. 10-17 https://doi.org/10.5139/JKSAS.2007.35.1.010
  11. Ansari, S. A., Knowles, K. and Zbikowski, R., "Insectlike flapping wings in the hover part 1: effect of wing kinematics," Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 1945-1954. https://doi.org/10.2514/1.35311
  12. Yoon, S. H., Cho, H. S., Lee, J. H., Kim, C. A. and Shin, S. J., "Effect of Wing Deformation by Camber Angle on Aerodynamic Performance of Flapping Micro Air Vehicles," AIAA Aviation 2019 Forum, June 2019.
  13. Lee, K. B., Kim, J. H. and Kim, C. A., "Aerodynamic Effects of Structural Flexibility in Two-Dimensional Insect Flapping Flight," Journal of Aircraft, Vol. 48, 2011, pp. 894-909. https://doi.org/10.2514/1.C031115
  14. Jeon, J. H., Cho, H. S., Kim, Y. H. Lee, J. H. Gong, D. H., Shin, S. J. and Kim, C. A., "Design and analysis of the link mechanism for the flapping wing MAV using flexible multi-body dynamic analysis," International Journal of Micro Air Vehicles, Vol. 9, 2017, pp. 253-269. https://doi.org/10.1177/1756829316682148
  15. Adhikari, D. R., "An Experimental Optimization of Flapping Wing Geometry in the Hover," Master Dissertation, Department of Mechanical and Aerospace Engineering, Seoul National University, 2018.
  16. Lee, J. H. and Kim, C. A., "Experimental Study on Flapping Wing Geometry," Journal of Institute of Control, Robotics and Systems, Vol. 25, No. 11, 2019, pp. 975-980. https://doi.org/10.5302/J.ICROS.2019.19.0172
  17. Martin, N. and Gharib, M., "Experimental trajectory optimization of a flapping fin propulsor using an evolutionary strategy," Bioinspiration & Biomimetics, Vol. 14, No. 1, 2018, pp. 1-21.
  18. Sane, S. P. and Dickinson, M. H., "The control of flight force by a flapping wing - lift and drag," The Journal of Experimental Biology, 2001, pp. 2607-2676.
  19. Roustant, O., Ginsbourger, D. and Deville, Y., "DiceKriging, DiceOptim: Two R pakages for the analysis of computer experiments by Kriging-Based metamodeling and optimization," Journal of Statistical Software, Vol. 51, No. 1, 2012.
  20. Lee, J. H. and Kim, C. A., "Development of a Mechanism for Flapping Wing Micro Aerial Vehicle," 17th International Conference on Control, Automation and Systems, 2017, pp. 21-22.
  21. Zarebski, I. and Salacinski, T., "Designing of non-circular gears," The Archive of Mechanical Engineering, Vol. 55, No. 3, 2008, pp. 275-292.
  22. Yoon, S. H., Cho, H. S. Lee, J. H. Kim, C. A. and Shin, S. J., "Effects of Camber Angle on Aerodynamic Performance of Flapping-Wing Micro Air Vehicle," Journal of Fluids and Structures, Accepted 200709.