DOI QR코드

DOI QR Code

Reconstituted Biodegradable Composites with Cellulose Structure

천연 Cellulose를 재구성한 생분해성 복합체 제조

  • Suh, Hyung Woo (Department of Fiber System Engineering, Dankook University) ;
  • Yoo, Chang Ha (Department of Fiber System Engineering, Dankook University) ;
  • Lee, Won Jun (Department of Fiber System Engineering, Dankook University)
  • 서형우 (단국대학교 파이버시스템공학과) ;
  • 유창하 (단국대학교 파이버시스템공학과) ;
  • 이원준 (단국대학교 파이버시스템공학과)
  • Received : 2020.10.09
  • Accepted : 2020.10.24
  • Published : 2020.10.31

Abstract

Environmental issues have led to a growing demand for eco-friendly functional materials and their biodegradable ability. One of the best way to design eco-friendly materials is to utilize bio-mimetic process to mimic their physical structures and chemical characteristics of naturally abundant materials. Here we develop lignocellulose-based composites for sustainable biodegradable materials, which mimic natural cellulose structures. Briefly, biodegradable PCL and stiff CNC crystals replace amorphous hemicellulose and cellulose fibroin, respectively, with enhanced mechanical strength and their facile fabrication. Indeed, electro-spinning with various applied voltage aided to manufacture nano-web structure to obtain definitely increased surface area. Importantly, the control of voltage affected the formation of agglomerates with different taylor cone structure, which could be attributed to the balance between spinning rate and charged constituents. The CNC reinforcement increased the mechanical strength (up to 3 MPa), and PCL increased the degradablity (up to 20% after 24 hrs), which confirms their aforementioned advantages.

Keywords

Acknowledgement

본 연구는 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. 2018R1C1B5085386)이며 단국대학교 파이버시스템공학과 소속 저자의 결과물로서 해당 학과는 2020년도 단국대학교 대학혁신지원사업 연구중심학과 육성사업 지원을 받았습니다.

References

  1. L. G. Wei, Y. C. Ma, K. L. Li, J. L. Wang, and Y. C. Yu, "Lignocellulosic Microparticles Reconstituted from Legume Straw-1-Butyl-3-Methylimidazolium Chloride-Water Solution", Appl. Mech. Mater., 2012, 217-219, 993-996. https://doi.org/10.4028/www.scientific.net/AMM.217-219.993
  2. M. S. Nikolic and J. Djonlagic, "Synthesis and Characterization of Biodegradable Poly(butylene succinate-co-butylene adipate)s", Polym. Degrad. Stab., 2001, 74, 263-270. https://doi.org/10.1016/S0141-3910(01)00156-2
  3. Y. Chen, S. Zhou, and Q. Li, "Microstructure Design of Biodegradable Scaffold and Its Effect on Tissue Regeneration", Biomaterials, 2011, 32, 5003-5014. https://doi.org/10.1016/j.biomaterials.2011.03.064
  4. J. P. Pires, A. S. Ramos, G. M. Miranda, G. L. de Souza, F. Fraga, C. M. N. Azevedo, R. A. Ligabue, J. E. A. de Lima, and R. V. Lourega, "Natural Freshwater Degradation of Polypropylene Blends with Additives of a Distinct Nature", Polym. Bull., https://doi.org/10.1007/s00289-020-03200-9 (2020).
  5. A. P. C. Almeida J. P. Canejo, S. N. Fernandes, C. Echeverria, P. L. Almeida, and M. H. Godinho, "Cellulose‐Based Biomimetics and Their Applications", Adv. Mater., 2018, 30, 1703655. https://doi.org/10.1002/adma.201703655
  6. L. Taiz and E. Zeiger in "Plant Physiology", Sinauer Associates, Massachusetts, 2010, pp.315-317.
  7. A. Zoghlami and G. Paes, "Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis", Front Chem., 2019, 7, 874. https://doi.org/10.3389/fchem.2019.00874
  8. K. S. Park and H. Kim, "Properties of Polybenzoxazine Composites Reinforced with Cellulose Nanocrystals", Text. Sci. Eng., 2019, 56, 149-154. https://doi.org/10.12772/TSE.2019.56.149
  9. W. J. Lee, A. J. Clancy, E. Kontturi, A. Bismarck, and M. S. P. Shaffer, "Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers", ACS Appl. Mater. Interfaces, 2016, 8, 31500-31504. https://doi.org/10.1021/acsami.6b11578
  10. E. C. Vigliani, "Carbon Disulphide Poisoning in Viscose Rayon Factories", Br. J. Ind. Med., 1954, 11, 235-244.
  11. D. Ko, S. H. Kim, C. H. Shin, C. R. Kim, Y. T. Lee, and J. Y. Kim, "Study on Bio-degradation of Cigarette Filter Rods with Filter Materials", J. Kor. Soc. Tob. Sci., 2005, 27, 75-82.
  12. T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, "The Chemistry of Side Reactions and Byproduct Formation in the System NMMO/cellulose (Lyocell process)", Prog. Polym. Sci., 2001, 26, 1763-1837. https://doi.org/10.1016/S0079-6700(01)00023-5
  13. H. Wang, G. Gurau, and R. D. Rogers, "Ionic Liquid Processing of Cellulose", Chem. Soc. Rev., 2012, 41, 1519-1537. https://doi.org/10.1039/c2cs15311d
  14. R. Protz, A. Lehmann, J. Ganster, and H. P. Fink, "Solubility and Spinnability of Cellulose-lignin Blends in Aqueous NMMO", Carbohydr. Polym., 2021, 251, 117027.
  15. N. Byrne, R. De Silva, Y. Ma, H. Sixta, and M. Hummel, "Enhanced Stabilization of Cellulose-lignin Hybrid Filaments for Carbon Fiber Production", Cellulose, 2018, 25, 723-733. https://doi.org/10.1007/s10570-017-1579-0
  16. H.-J. Jang, W.-J. Kim, and Y.-S. Chung, "Preparation and Characteristics of Cellulose Based Carbon Hollow Fibers Containing MWCNT", Text. Sci. Eng., 2016, 53, 24-31. https://doi.org/10.12772/TSE.2016.53.024
  17. L. Wang and A. J. Ryan in "Electrospinning for Tissue Regeneration", Woodhead Publishing, Cambridge, 2011, pp.3-33.
  18. A. Saddawi, J. M. Jones, A. Williams, and M. A. Wojtowicz, "Kinetics of the Thermal Decomposition of Biomass", Energy Fuels., 2010, 24, 1274-1282. https://doi.org/10.1021/ef900933k
  19. C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, "Study on Morphology of Electrospun Poly(vinyl alcohol) Mats", Eur. Polym. J., 2005, 41, 423−432. https://doi.org/10.1016/j.eurpolymj.2004.10.027
  20. D. H. Reneker and A. L. Yarin, "Electrospinning Jets and Polymer Nanofibers", Polymer, 2008, 49, 2387-2425. https://doi.org/10.1016/j.polymer.2008.02.002
  21. A. Hivechi, S. Hajir Bahrami, and R. A. Siegel, "Drug Release and bIodegradability of Electrospun Cellulose Nanocrystal Reinforced Polycaprolactone", Mater. Sci. Eng. C, 2019, 94, 929-937. https://doi.org/10.1016/j.msec.2018.10.037
  22. J. Li, Y. He, and Y. Inoue, "Study on Thermal and Mechanical Properties of Biodegradable Blends of Poly($\varepsilon$-caprolactone) and Lignin", Polym. J., 2001, 33, 336-343. https://doi.org/10.1295/polymj.33.336
  23. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, "Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis", Fuel, 2007, 86, 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
  24. S. Sen, S. Patila, and D. S. Argyropoulos, "Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review", Green Chem., 2015, 17, 4862-4887. https://doi.org/10.1039/C5GC01066G
  25. E. Diaz, I. Sandonis, and M. B. Valle, "In Vitro Degradation of Poly(caprolactone)/nHA Composites", J. Nanomater., 2014, 2014, 8, 802435.
  26. F. V. Ferreira, A. Dufresne, I. F. Pinheiro, D. H. S. Souza, R. F. Gouveia, L. H. I. Mei, and L. M. F. Lona, "How do Cellulose Nanocrystals Affect the Overall Properties of Biodegradable Polymer Nanocomposites: A Comprehensive Review", Eur. Polym. J., 2018, 108, 274-285. https://doi.org/10.1016/j.eurpolymj.2018.08.045