References
- T.G. Theofanous, et al., In-vessel coolability and retention of a core melt, Nucl. Eng. Des. 169 (1997) 1-48. https://doi.org/10.1016/S0029-5493(97)00009-5
- O. Kymalainen, et al., In-vessel corium at the Loviisa plant, Nucl. Eng. Des. 169 (1997) 109-130. https://doi.org/10.1016/S0029-5493(96)01280-0
- Y.P. Zhang, et al., Analysis of safety margin of in-vessel retention for AP1000, Nucl. Eng. Des. 240 (2010) 2023-2033. https://doi.org/10.1016/j.nucengdes.2010.04.020
- V. Barrachin, F. Defoort, Thermophysical properties of in-vessel corium: MASCA programme related results, in: Proceedings of MASCA Seminar 2004. Aix-En Provence, France, 2004.
- Sehgal, et al., Natural convection heat transfer in a stratified melt pool with volumetric heat generation, in: 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics Operations and Safety, NUTHOS-6, Nara, Japan, 2004.
- S.H. Kim, et al., Natural convection of the oxide pool in a three-layer configuration of core melts, Nucl. Eng. Des. 317 (2017) 100-109. https://doi.org/10.1016/j.nucengdes.2017.03.036
- S.H. Kim, B.J. Chung, Mass transfer experiments on the natural convection heat transfer of the oxide pool in a three-layer configuration, Prog. Nucl. Energy 106 (2018) 11-19. https://doi.org/10.1016/j.pnucene.2018.02.022
- J.W. Bae, B.J. Chung, Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating, Nucl. Eng. Technol. 51 (2019) 996-1007. https://doi.org/10.1016/j.net.2019.02.004
- F.A. Kulacki, A.A. Emara, Steady and transient thermal convection in a fluid layer with uniform volumetric energy sources, J. Fluid Mech. 83 (1977) 375-395. https://doi.org/10.1017/S0022112077001244
- M.S. Sohal, L.J. Siefken, A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor, Idaho National Engineering and Environmental Laboratory, 1999.
- Bejan, Convection Heat Transfer, third ed., John Wiley & Sons, INC, New York, 2006, pp. 96-97, 173-179, 197-200, 512-516.
- S. Ostrach, Natural convection in enclosures, J. Heat Transf.-Trans. ASME 110 (1988) 1175-1190. https://doi.org/10.1115/1.3250619
- Y. Tasaka, et al., Experimental investigation of natural convection induced by internal heat generation, J. Phys. Conf. 14 (2005) 168-179. https://doi.org/10.1088/1742-6596/14/1/021
- D.J. Tritton, M.N. Zarraga, Convection in horizontal layers with internal heat generation, Experiments, J. Fluid Mech. 30 (1967) 21-31. https://doi.org/10.1017/S0022112067001272
- J. Takahashi, et al., Experimental study of cell pattern formation induced by internal heat sources in a horizontal fluid layer, Int. J. Heat Mass Tran. 53 (2010) 1483-1490. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.048
- Bonnet and Seiler, Thermal Hydraulic Phenomena in Corium Pools: the BALI Experiment, 7th International Conference on Nuclear Engineering, Tokyo, Japan, 1999.
- S.H. Kim, et al., Two- and three-dimensional experiments for oxide pool in invessel retention of core melts, Nucl. Eng. Technol. 49 (2017) 1405-1413. https://doi.org/10.1016/j.net.2017.05.008
- F.A. Kulacki, R.J. Goldstein, Thermal convection in a horizontal fluid layer with uniform volumetric energy sources, J. Fluid Mech. 55 (1972) 271-287. https://doi.org/10.1017/S0022112072001855
- O. Kymalainen, et al., Heat flux distribution from a volumetrically heated pool with high Rayleigh number, Nucl. Eng. Des. 149 (1994) 401-408. https://doi.org/10.1016/0029-5493(94)90305-0
- B.S. Frantz, V.K. Dhir, An Experimental Investigation of Natural Convection in Spherical Segments of Volumetrically Heated Pools, ASME Proceeding of National heat Transfer Conference, San Diego, USA, 1992.
- F.J. Asfia, V.K. Dhir, An experimental study of natural convection in a volumetrically heated spherical pool bounded on top with a rigid wall, Nucl. Eng. Des. 163 (1996) 333-348. https://doi.org/10.1016/0029-5493(96)01215-0
- T.G. Theofanous, et al., The first results from the ACOPO experiment, Nucl. Eng. Des. 169 (1997b) 49-57. https://doi.org/10.1016/S0029-5493(97)00023-X
- H.K. Park, B.J. Chung, Mass transfer experiments for the heat load during invessel retention of core melt, Nucl. Eng. Technol. 48 (2016) 906-914. https://doi.org/10.1016/j.net.2016.02.015
- F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, fifth ed., John Wiley & Sons Inc., New York, 2003, pp. 614-619.
- J.N. Agar, Diffusion and convection at electrodes, Discuss. Faraday Soc. 1 (1947) 26-37. https://doi.org/10.1039/df9470100026
- E.J. Fenech, C.W. Tobias, Mass transfer by free convection at horizontal electrodes, Electrochim. Acta 2 (1960) 311-325. https://doi.org/10.1016/0013-4686(60)80027-8
- V.G. Levich, Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, NJ, 1962.
- C.W. Tobias, R.G. Hickman, Ionic mass transfer by combined free and forced convection, Int. J. Res. Phys. Chem. Chem. Phys. 2290 (1965) 145-166.
- C.R. Wike, et al., Free convection mass transfer at vertical plates, Chem. Eng. Prog. 49 (1953) 663-674.
- R.J. Park, et al., Corium behavior in the lower plenum of the reactor vessel under IVR-ERVC condition: technical issues, Nucl. Eng. Technol. 44 (2012) 237-248. https://doi.org/10.5516/NET.03.2012.701
- Y. Konishi, et al., Anodic dissolution phenomena accompanying supersaturation of copper sulfate along a vertical plane copper anode, Electrochim. Acta 48 (2003) 2615-2624. https://doi.org/10.1016/S0013-4686(03)00305-0
- S.H. Kim, B.J. Chung, Heat load imposed on reactor vessels during in-vessel retention of core melts, Nucl. Eng. Des. 308 (2016) 1-8. https://doi.org/10.1016/j.nucengdes.2016.08.010
- H.K. Park, et al., Variation in the angular heat flux of the oxide pool with Rayleigh number, Ann. Nucl. Energy 170 (2017) 128-135.
- W.G. Steele, H.W. Coleman, Experimental and Uncertainty Analysis for Engineers, second ed., John Wiley & Son, Canada, 1999.
- U. Steinberner, H.H. Reineke, Turbulent buoyancy convection heat transfer with internal heat sources, Int. Heat Transfer Conf. 6 (1978).
- M. Corcione, Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above, Int. J. Therm. Sci. 42 (2003) 199-208. https://doi.org/10.1016/S1290-0729(02)00019-4
Cited by
- Influence of system buoyancy and hydraulic diameter on turbulent mixed convection in a rectangular duct vol.176, 2020, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121411
- Influence of crust formation on the heat load to a reactor vessel under an in-vessel retention condition vol.166, 2020, https://doi.org/10.1016/j.anucene.2021.108813
- Influence of position on the natural and forced convective heat transfer of a single heating sphere in a packed bed vol.132, 2020, https://doi.org/10.1016/j.expthermflusci.2021.110549