DOI QR코드

DOI QR Code

Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap

  • Arzhannikov, Andrey V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences) ;
  • Shmakov, Vladimir M. (Federal State Unitary Enterprise (Russian Federal Nuclear Center-Zababakhin All-Russia Research Institute of Technical Physics)) ;
  • Modestov, Dmitry G. (Federal State Unitary Enterprise (Russian Federal Nuclear Center-Zababakhin All-Russia Research Institute of Technical Physics)) ;
  • Bedenko, Sergey V. (National Research Tomsk Polytechnic University) ;
  • Prikhodko, Vadim V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences) ;
  • Lutsik, Igor O. (National Research Tomsk Polytechnic University) ;
  • Shamanin, Igor V. (National Research Tomsk Polytechnic University)
  • Received : 2020.02.19
  • Accepted : 2020.05.05
  • Published : 2020.11.25

Abstract

To study the thermophysical and neutronic properties of thorium-plutonium fuel, a conceptual design of a hybrid facility consisting of a subcritical Th-Pu reactor core and a source of additional D-D neutrons that places on the axis of the core is proposed. The source of such neutrons is a column of high-temperature plasma held in a long magnetic trap for D-D fusionreactions. This article presents computer simulation results of generation of thermonuclear neutrons in the plasma, facility neutronic properties and the evolution of a fuel nuclide composition in the reactor core. Simulations were performed for an axis-symmetric radially profiled reactor core consisting of zones with various nuclear fuel composition. Such reactor core containing a continuously operating stationary D-D neutron source with a yield intensity of Y = 2 × 1016 neutrons per second can operate as a nuclear hybrid system at its effective coefficient of neutron multiplication 0.95-0.99. Options are proposed for optimizing plasma parameters to increase the neutron yield in order to compensate the effective multiplication factor decreasing and plant power in a long operating cycle (3000-day duration). The obtained simulation results demonstrate the possibility of organizing the stable operation of the proposed hybrid 'fusion-fission' facility.

Keywords

References

  1. M.K. Rowinski, T.J. White, J. Zhao, Small and Medium sized Reactors: a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 623-656, https://doi.org/10.1016/j.rser.2015.01.006.
  2. T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (2008) 4323-4330, https://doi.org/10.1016/j.enpol.2008.09.059.
  3. N. Kodochigov, Y. Sukharev, E. Marova, et al., Neutronic features of the GT-MHR reactor, Nucl. Eng. Des. 222 (2003) 161-171, https://doi.org/10.1016/S0029-5493(03)00010-4.
  4. Innovative nuclear systems of the VI generation. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx, 2020 (accessed 20 February 2020).
  5. Akademik lomonosov-1, 2. https://prisweb.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=895, 2019 (accessed 20 February 2020.
  6. High temperature gas reactor: shidao BAY-1. https://prisweb.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=957%20, 2020 (accessed 20 February 2020).
  7. Idaho National Laboratory, Carbon free power project. https://inl.gov/article/frequently-asked-questions, 2018 (accessed 20 February 2020).
  8. Us Department of Energy, The project for constructing a high temperature gas reactor. http://www.world-nuclear-news.org/Articles/Triso-project-clears-first-phase-of-loan-guarantee, 2019 (accessed 20 February 2020).
  9. International Atomic Energy Agency, Thorium Fuel Cycle-Potential Benefits and Challenges, IAEA-TECDOC-1450, IAEA, Vienna, 2005. https://www.iaea.org/publications/7192/thorium-fuel-cycle-potential-benefits-and-challenges (accessed 20 February 2020).
  10. P.R. Kasten, Review of the radkowsky thorium reactor concept, Sci. Global Secur. 7 (1977) 237-269. https://doi.org/10.1080/08929889808426462
  11. A. Talamo, W. Gudowski, Adapting the deep burn in-core fuel management strategy for the gas turbine-modular helium reactor to a uranium-thorium fuel, Ann. Nucl. Energy 32 (2005) 1750-1781, https://doi.org/10.1016/j.anucene.2005.07.002.
  12. H. Chang, Y. Yang, X. Jing, Y. Xu, Thorium-based fuel cycles in the modular high temperature reactor, Tsinghua Science and Technology. https://ieeexplore.ieee.org/document/6075960.
  13. R. Gregory, Choppin, Jan-OlovLiljenzin and Jan Rydberg, Radiochemistry and Nuclear Chemistry, second ed., Butterworth-Heinemann Ltd, Oxford, 1995.
  14. H.J. Rutten, K.A. Haas, Research on the incineration of plutonium in a modular HTR using thorium-based fuel, Nucl. Eng. Des. (2000), https://doi.org/10.1016/S0029-5493(99)00222-8.
  15. I. Shamanin, S. Bedenko, Y. Chertkov, I. Gubaydulin, Gas-cooled thorium reactor with fuel block of the unified design, Advances in Materials Science and Engineering (2015), https://doi.org/10.1155/2015/392721. ID 392721.
  16. I.V. Shamanin, V.M. Grachev, YuB. Chertkov, et al., Neutronic properties of high-temperature gas-cooled reactors with thorium fuel, Ann. Nucl. Energy 113 (2018) 286-293, https://doi.org/10.1016/j.anucene.2017.11.045.
  17. S.V. Bedenko, N. Ghal-Eh, I.O. Lutsik, I.V. Shamanin, A fuel for generation IV nuclear energy system: isotopic composition and radiation characteristics, Appl. Radiat. Isot. 147 (2019) 189-196, https://doi.org/10.1016/j.apradiso.2019.03.005.
  18. I.V. Dulera, Dr R.K. Sinha, A. Rama Rao, R.J. Patel, High temperature reactor technology development in India, Prog. Nucl. Energy 101 (2017) 82-99, https://doi.org/10.1016/j.pnucene.2017.04.020.
  19. D. Heuer, E. Merle-Lucotte, M. Allibert, et al., Towards the thorium fuel cycle with molten salt fast reactors, Ann. Nucl. Energy 64 (2014) 421-429, https://doi.org/10.1016/j.anucene.2013.08.002.
  20. C. Zou, G. Zhu, C. Yu, et al., Preliminary study on TRUs utilization in a small modular Th-based molten salt reactor (smTMSR), Nucl. Eng. Des. 339 (2018) 75-82, https://doi.org/10.1016/j.nucengdes.2018.08.026.
  21. H. Hidayatullah, S. Susyadi, M.H. Subki, Design and technology development for small modular reactors - safety expectations, prospects and impediments of their deployment, Prog. Nucl. Energy 79 (2015) 127-135, https://doi.org/10.1016/j.pnucene.2014.11.010.
  22. D.A. Petti, R.R. Hobbins, P. Lowry, H. Gougar, Representative source terms and the influence of reactor attributes on functional containment in modular high-temperature gas-cooled reactors, Nucl. Technol. 184 (2013) 181-197, https://doi.org/10.13182/NT184-181.
  23. A. Beklemishev, A. Anikeev, V. Astrelin, et al., Novosibirsk project of gas-dynamic multiple-mirror trap, Fusion Sci. Technol. 63 (2013) 46-51, https://doi.org/10.13182/FST13-A16872.
  24. D.V. Yurov, A.V. Anikeev, P.A. Bagryansky, et al., Parameters optimization in a hybrid system with a gas dynamic trap-based neutron source, Fusion Eng. Des. 87 (2012) 1684-1692, https://doi.org/10.1016/j.fusengdes.2012.07.005.
  25. A. Arzhannikov, S. Bedenko, V. Shmakov, et al., Gas-cooled thorium reactor at various fuel loadings and its modification by a plasma source of extra neutrons, Nucl. Sci. Tech. 30 (2019) 181, https://doi.org/10.1007/s41365-019-0707-y.
  26. D.V. Yurov, V.V. Prikhodko, YuA. Tsidulko, Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma, Plasma Phys. Rep. 42 (3) (2016) 210-225, https://doi.org/10.1134/S1063780X16030090.
  27. D.D. Siemer, Why the molten salt fast reactor (MSFR) is the <> Gen IV reactor, Energy Science & Engineering 3 (2014) 83-97, https://doi.org/10.1002/ese3.59.
  28. G.V. Tuyle, D.H. Anl, D. Beller, et al., A roadmap for developing ATW technology: system scenarios & integration, Prog. Nucl. Energy 38 (2001) 3-23, https://doi.org/10.1016/S0149-1970(00)00094-9.
  29. W. Gudowski, V. Arzhanov, C. Broeders, et al., Review of the European project - impact of Accelerator-Based Technologies on nuclear fission safety (IABAT), Prog. Nucl. Energy 38 (2001) 135-151, https://doi.org/10.1016/S0149-1970(00)00099-8.
  30. M. Kotschenreuther, P.M. Valanju, S.M. Mahajan, E.A. Schneider, Fusionefission transmutation scheme-efficient destruction of nuclear waste, Fusion Eng. Des. 84 (2009) 83-88, https://doi.org/10.1016/j.fusengdes.2008.11.019.
  31. R.W. Moir, N.N. Martovetsky, A.W. Molvik, et al., Mirror-based hybrids of recent design, AIP Conference Proceedings 1442 (2012) 1-4706853, https://doi.org/10.1063/1.4706853.
  32. R.W. Moir, Fission-suppressed fusion, thorium-cycle breeder and nonproliferation, Fusion Sci. Technol. 61 (2012) 243-249, https://doi.org/10.13182/FST12-A13427.
  33. T.C. Simonen, R.W. Moir, A.W. Molvik, D.D. Ryutov, A 14MeV fusion neutron source for material and blanket development and fission fuel production, Nucl. Fusion 53 (2013), https://doi.org/10.1088/0029-5515/53/6/063002, 063002.
  34. A.N. Shmelev, G.G. Kulikov, V.A. Kurnaev, et al., Hybrid fusion-fission reactor with a thorium blanket: it's potential in the fuel cycle of nuclear reactors, Phys. Atom. Nucl. 78 (2015) 1100-1111, https://doi.org/10.1134/S1063778815100117.
  35. T.C. Simonen, Three game changing discoveries: a simpler fusion concept? J. Fusion Energy 35 (2016) 63-68, https://doi.org/10.1007/s10894-015-0017-2.
  36. J. Knastera, F. Arbeiter, P. Carac, et al., IFMIF, the European-Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: current status and future options, Nucl. Materials Energ. 9 (2016) 46-54, https://doi.org/10.1016/j.nme.2016.04.012.
  37. S. Bedenko, A. Karengin, N. Ghal-Eh, et al., Thermo-physical properties of dispersion nuclear fuel for a new-generation reactor: a computational approach, AIP Conference Proceedings 2101 (2019), https://doi.org/10.1063/1.5099594, 020002.
  38. MCU project, Monte Carlo modelling of particle transport. https://mcuproject.ru, 2018 (accessed 13 November 2018).
  39. Y.Z. Kandiev, E.A. Kashaeva, K.E. Khatuntsev, et al., PRIZMA status, Ann. Nucl. Energy 82 (2015) 116-120, https://doi.org/10.1016/j.anucene.2014.09.006.

Cited by

  1. Subcriticality control elements in a reactor system with an extended plasma source of neutrons with regard for temperature vol.7, pp.2, 2020, https://doi.org/10.3897/nucet.7.68949